scholarly journals Interval analysis-based Bi-iterative algorithm for robust TDOA-FDOA moving source localisation

2021 ◽  
Vol 17 (2) ◽  
pp. 155014772199177
Author(s):  
Ningning Qin ◽  
Chao Wang ◽  
Changxu Shan ◽  
Le Yang

In this study, an interval extension method of a bi-iterative is proposed to determine a moving source. This method is developed by utilising the time difference of arrival and frequency difference of arrival measurements of a signals received from several receivers. Unlike the standard Gaussian noise model, the time difference of arrival - frequency difference of arrival measurements are obtained by interval enclosing, which avoids convergence and initialisation problems in the conventional Taylor-series method. Using the bi-iterative strategy, the algorithm can alternately calculate the position and velocity of the moving source in interval vector form. Simulation results indicate that the proposed scheme significantly outperforms other methods, and approaches the Cramer-Rao lower bound at a sufficiently high noise level before the threshold effect occurs. Moreover, the interval widths of the results provide the confidence degree of the estimate.

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Gang Li ◽  
Min Zhou ◽  
Hongwen Tang ◽  
Hongbin Chen

The low-orbit dual-satellite passive location system provides a cost-efficient and easy implementation platform, by which positions of unknown emitters on the Earth can be determined through measuring both the time and the frequency differences by two low-orbit satellites in space. However, in reality, this dual-satellite location system has low positioning accuracy because of the existence of systematic errors. In this paper, in order to address the problem of low positioning accuracy in low-orbit dual-satellite systems, a virtualization approach, consisting of the establishment of the virtual reference station and virtual frequency conversion, is proposed to correct systematic errors in the system. Specifically, we first analyze the coming source of systematic errors in the dual-satellite location system, and then, a virtual reference station and virtual frequency are constructed to correct errors in the measured time difference of arrival and the frequency difference of arrival, respectively. Simulation results show that systematic errors caused by the measured time difference of arrival can be significantly reduced, and the correction efficiency, defined as a ratio between remaining errors after implementing the proposed method over uncorrected ones, for the measured frequency difference of arrival, largely relies on both the virtual frequency and the transmission frequency of reference stations.


Author(s):  
Diniya Jose ◽  
Shoney Sebastian

Localisation technologies have always remained in the limelight of positioning-science as researchers have ever shown keen interest to know the exact positions of things. Ultrasonic sensors are mainly used for localisation of mobile robots since they provide high accuracy. This paper presents Taylor Series Method in Time Difference of Arrival approach using ultrasonic sensors.Signals are send from the sensors periodically.The time difference of arrival of signals from the ultrasonic sensors is used by the receiver unit to estimate the location of the mobile unit. The equations formed by using Time Difference of Approach are solved using Taylor Series Method. Taylor Series Method provides a more accurate result since they give less error compared to other methods and they ignore the measurement errors.


Sign in / Sign up

Export Citation Format

Share Document