High-Frequency Irreversible Electroporation: Safety and Efficacy of Next-Generation Irreversible Electroporation Adjacent to Critical Hepatic Structures

2017 ◽  
Vol 24 (3) ◽  
pp. 276-283 ◽  
Author(s):  
Imran A. Siddiqui ◽  
Russell C. Kirks ◽  
Eduardo L. Latouche ◽  
Matthew R. DeWitt ◽  
Jacob H. Swet ◽  
...  

Irreversible electroporation (IRE) is a nonthermal ablation modality employed to induce in situ tissue-cell death. This study sought to evaluate the efficacy of a novel high-frequency IRE (H-FIRE) system to perform hepatic ablations across, or adjacent to, critical vascular and biliary structures. Using ultrasound guidance H-FIRE electrodes were placed across, or adjacent to, portal pedicels, hepatic veins, or the gall bladder in a porcine model. H-FIRE pulses were delivered (2250 V, 2-5-2 pulse configuration) in the absence of cardiac synchronization or intraoperative paralytics. Six hours after H-FIRE the liver was resected and analyzed. Nine ablations were performed in 3 separate experimental groups (major vessels straddled by electrodes, electrodes placed adjacent to major vessels, electrodes placed adjacent to gall bladder). Average ablation time was 290 ± 63 seconds. No electrocardiogram abnormalities or changes in vital signs were observed during H-FIRE. At necropsy, no vascular damage, coagulated-thermally desiccated blood vessels, or perforated biliary structures were noted. Histologically, H-FIRE demonstrated effective tissue ablation and uniform induction of apoptotic cell death in the parenchyma independent of vascular or biliary structure location. Detailed microscopic analysis revealed minor endothelial damage within areas subjected to H-FIRE, particularly in regions proximal to electrode insertion. These data indicate H-FIRE is a novel means to perform rapid, reproducible IRE in liver tissue while preserving gross vascular/biliary architecture. These characteristics raise the potential for long-term survival studies to test the viability of this technology toward clinical use to target tumors not amenable to thermal ablation or resection.

EBioMedicine ◽  
2019 ◽  
Vol 44 ◽  
pp. 112-125 ◽  
Author(s):  
Veronica M. Ringel-Scaia ◽  
Natalie Beitel-White ◽  
Melvin F. Lorenzo ◽  
Rebecca M. Brock ◽  
Kathleen E. Huie ◽  
...  

2016 ◽  
Vol 34 (4_suppl) ◽  
pp. 277-277
Author(s):  
Imran A Siddiqui ◽  
Russell C. Kirks ◽  
Erin H Baker ◽  
Eduardo Latouche ◽  
Matt Dewitt ◽  
...  

277 Background: Irreversible electroporation unlike ablation is excellent in inducing cell death via apoptosis. It, however, has disadvantages of electrical conduction via cardiac and nervous tissue. This results in requiring cardiac monitoring and general anesthesia and paralytics while performing electroporation. We hypothesized a novel high-frequency IRE (H-FIRE) system employing ultra-short bipolar pulses would obviate the need for cardiac synchronization and paralytics while maintaining measurable effect on cell death. Methods: Female swine (55-65Kg) were used. Two H-FIRE electrodes were inserted into the liver (1.5-cm spacing). In the absence of paralytics H-FIRE pulses were delivered (2250V, 2-5-2 pulse configuration) at different on times (100 vs. 200μs) or number of pulses (100 vs. 300). Next electrodes were placed across major hepatic vascular structures and H-FIRE performed. At conclusion tissue was resected and analyzed histologically. Results: 24 H-FIREs were performed (mean ablation time 275 secs). No EKG abnormalities or changes in vital signs were measured during H-FIRE procedures. In 1/24 H-FIREs minor twitching of the rectus abdominis was recorded coinciding with pulse delivery. Histologically, tissues had effective electroporation as evidenced by cell death and caspase activity. Blinded scoring was performed for necrosis and apoptosis. Areas of cell death were predictable. No significant vascular damage or coagulated/thermally-desiccated blood was detected within major vessels following H-FIRE. Conclusions: H-FIRE is a novel way of liver electroporation. It produces predictable cell apoptosis without the requirement of paralytics and alteration of electrocardiographic signals as compared to traditional electroporation, while preserving underlying vascular integrity. Its application in cancer cell death needs to be further studied, but it has a potential for clinical use in targeting tumors with minimal morbidity and associated cardiac and neurologic side effects.


2007 ◽  
Vol 6 (4) ◽  
pp. 287-293 ◽  
Author(s):  
Edward W. Lee ◽  
Christopher T. Loh ◽  
Stephen T. Kee

Preliminary results of percutaneous irreversible electroporation (PIE) on swine liver as a novel non-thermal ablation are presented. The goal of this study was to evaluate the feasibility of using irreversible electroporation in more clinically applicable manner, a percutaneous method, and to investigate a possible role of apoptosis in PIE-induced cell death. We performed PIE on four swine livers under real-time ultrasound guidance. The lesions created by PIE were imaged with ultrasound and were correlated with histology data, including pro-apoptotic marker. A total of 11 lesions were created with a mean size of 16.8 cm3 in 8.4 ± 1.8 minutes. Real-time monitoring was performed and a correlation of (+) 2 ± 3.2 mm in measurement comparison between ultrasound and gross pathologic measurements was demonstrated. Complete hepatic cell death without structural destruction, unaffected by heat-sink effect, and with a sharp demarcation between the ablated zone and the non-ablated zone were observed. Immunohistological analysis confirmed complete apoptotic cell death by PIE on Von Kossa, BAX, and H&E staining. In summary, PIE can provide a novel and unique ablative method with real-time monitoring capability, ultra-short procedure time, non-thermal ablation, and well-controlled and focused apoptotic cell death.


2021 ◽  
pp. 108001
Author(s):  
Kelsey R. Murphy ◽  
Kenneth N. Aycock ◽  
Alayna N. Hay ◽  
John H. Rossmeisl ◽  
Rafael V. Davalos ◽  
...  

2020 ◽  
Vol 131 ◽  
pp. 107369 ◽  
Author(s):  
Elisa M. Wasson ◽  
Nastaran Alinezhadbalalami ◽  
Rebecca M. Brock ◽  
Irving C. Allen ◽  
Scott S. Verbridge ◽  
...  

Author(s):  
Christopher B. Arena ◽  
Michael B. Sano ◽  
Marissa Nichole Rylander ◽  
Rafael V. Davalos

Electroporation is a non-linear biophysical mechanism in which the application of an external pulsed electric field leads to an increase in the permeability of cellular membranes. The extent of electroporation is attributed to the induced buildup of charge across the membrane, and consequently, transmembrane potential (TMP). Increasing the TMP has been described to produce various permeabilizing effects, wherein the formation of hydrophilic, aqueous pores becomes energetically favorable [1]. If the pulse parameters are tuned such that the membrane defects are only temporary, and the cell remains viable, the process is termed reversible electroporation. As a cancer therapy, reversible electroporation has been employed to increase the cellular uptake of chemotherapeutic drugs. Irreversible electroporation (IRE) results when membrane defects are permanent, leading to cell death. Recently, IRE has been recognized as an independent means to destroy tumors without the use of adjuvant drugs and prior to the onset of thermal injury [2].


Author(s):  
Anne F. Bushnell ◽  
Sarah Webster ◽  
Lynn S. Perlmutter

Apoptosis, or programmed cell death, is an important mechanism in development and in diverse disease states. The morphological characteristics of apoptosis were first identified using the electron microscope. Since then, DNA laddering on agarose gels was found to correlate well with apoptotic cell death in cultured cells of dissimilar origins. Recently numerous DNA nick end labeling methods have been developed in an attempt to visualize, at the light microscopic level, the apoptotic cells responsible for DNA laddering.The present studies were designed to compare various tissue processing techniques and staining methods to assess the occurrence of apoptosis in post mortem tissue from Alzheimer's diseased (AD) and control human brains by DNA nick end labeling methods. Three tissue preparation methods and two commercial DNA nick end labeling kits were evaluated: the Apoptag kit from Oncor and the Biotin-21 dUTP 3' end labeling kit from Clontech. The detection methods of the two kits differed in that the Oncor kit used digoxigenin dUTP and anti-digoxigenin-peroxidase and the Clontech used biotinylated dUTP and avidinperoxidase. Both used 3-3' diaminobenzidine (DAB) for final color development.


Sign in / Sign up

Export Citation Format

Share Document