scholarly journals Rapid Deployment Aortic Valves Deliver Superior Hemodynamic Performance in Vitro

Author(s):  
Lisong Ai ◽  
Harvey Chen ◽  
Virginia Lin ◽  
Vinayak N. Bapat
2019 ◽  
Vol 68 (07) ◽  
pp. 608-615 ◽  
Author(s):  
Parwis Baradaran Rahmanian ◽  
Kaveh Eghbalzadeh ◽  
Daniel Giese ◽  
Elmar W. Kuhn ◽  
Ilija Djordjevic ◽  
...  

Abstract Background Surgical aortic valve replacement (SAVR) is nowadays discussed whether it remains the gold standard of treatment. In the last decade, there has been a tremendous increase in transcatheter aortic valve implantation (TAVI) due to the growing expertise and excellent results of the catheter-based approach. We, therefore, retrospectively compared the rapid deployment valve (RDV), the Edwards Intuity valve (IEV), with the Edwards Sapien 3 (S3V) with regard to post-procedural hemodynamics. Methods A total of 246 patients treated with TAVI or SAVR between February 2009 and November 2015 were included. One-hundred twenty-five patients were analyzed in the SAVR group and compared with 121 patients undergoing TAVI. Transvalvular pressure gradients (PGs) and the incidence and extent of aortic regurgitation (AR) were compared post-procedurally by echocardiography for each valve size. In vitro hemodynamics were analyzed by placing both valves into an aortic silicone phantom connected to a pulsatile flow pump and measured using phase-contrast magnetic resonance imaging (4D flow MRI). Results Post-procedurally, mean transvalvular PGs for the 23 mm valves were 9 (7;11.5) versus 13 (9;18) (p < 0.001), whereas maximum PGs were 16.5 (14;22) versus 25.5 mm Hg (17.5;34) (p < 0.001) in IEV and S3V patients, respectively. The 21 mm IEV showed significantly lower transvalvular PGs compared with the 23 mm S3V: mean PGs: 11 (8;13) versus 13 (9;18) (p < 0.05); maximum PG: 19.5 (13;24) versus 25.5 (18;34) mm Hg (p < 0.05). Analysis revealed significantly lower post-procedural transvalvular PGs for larger valves sizes. With respect to AR, the incidence of AR was significantly lower in IEV group (p < 0.05). In vitro velocities and turbulent kinetic energy values showed similar results between both valves. Conclusion Implanted RDVs presented a lower incidence of paravalvular regurgitation and were associated with significantly lower post-procedural transvalvular PGs, especially for small valve sizes. Our data might support the application of rapid deployment aortic valves in patients with small aortic annulus in the TAVI era.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
H Yang ◽  
Y Song ◽  
Z Huang ◽  
J Qian ◽  
Z Pang ◽  
...  

Abstract Background Aortic valve disease is the most common valvular heart disease leading to valve replacement. The efficacy of pharmacological therapy for aortic valve disease is limited by the high mechanical stress at the aortic valves impairing the binding rate. We aimed to identify nanoparticle coating with entire platelet membranes to fully mimic their inherent multiple adhesion mechanisms and target the sclerotic aortic valve of apolipoprotein E-deficient (ApoE−/−) mice based on their multiple sites binding capacity under high shear stress. Methods Considering the potent interaction of platelet membrane glycoproteins with components present in sclerotic aortic valves, platelet membrane-coated nanoparticles (PNPs) were synthetized and the binding capacity under high shear stress was evaluated in vitro and in vivo. Results Compared with PNPs bound intensity in the static station, 161%, 59%, and 39% of attached PNPs remained adherent on VWF-, collagen-, and fibrin-coated surfaces under shear stress of 25dyn/cm2 respectively. PNPs demonstrated effectively adhering to von Willebrand factor, collagen and fibrin under shear stresses in vitro. In an aortic valve disease model established in ApoE−/− mice, PNPs group exhibited significant increase of accumulation in the aortic valves compared with PBS and control NP group. PNPs displayed high degrees of proximity or co-localization with vWF, collagen and fibrin, which exhibited good targeting to sclerotic aortic valves by mimicking platelet multiple adhesive mechanisms. Conclusion PNPs could provide a promising platform for the molecular diagnosis and targeting treatment of aortic valve disease. Targeting combination Funding Acknowledgement Type of funding source: Foundation. Main funding source(s): National Natural Science Foundation of China


2015 ◽  
Vol 149 (1) ◽  
pp. 163-173.e2 ◽  
Author(s):  
Nassir M. Thalji ◽  
Rakesh M. Suri ◽  
Hector I. Michelena ◽  
Kevin L. Greason ◽  
Joseph A. Dearani ◽  
...  

2018 ◽  
Vol 76 (8) ◽  
Author(s):  
Kavindra V Singh ◽  
Kenneth L Pinkston ◽  
Peng Gao ◽  
Barrett R Harvey ◽  
Barbara E Murray

AbstractAce (Adhesin to collagen from Enterococcus faecalis) is a cell-wall anchored protein that is expressed conditionally and is important for virulence in a rat infective endocarditis (IE) model. Previously, we showed that rats immunized with the collagen binding domain of Ace (domain A), or administered anti-Ace domain A polyclonal antibody, were less susceptible to E. faecalis endocarditis than sham-immunized controls. In this work, we demonstrated that a sub nanomolar monoclonal antibody (mAb), anti-Ace mAb70, significantly diminished E. faecalis binding to ECM collagen IV in in vitro adherence assays and that, in the endocarditis model, anti-Ace mAb70 pre-treatment significantly reduced E. faecalis infection of aortic valves. The effectiveness of anti-Ace mAb against IE in the rat model suggests it might serve as a beneficial agent for passive protection against E. faecalis infections.


2012 ◽  
Vol 134 (8) ◽  
Author(s):  
Asher L. Trager ◽  
Chander Sadasivan ◽  
Baruch B. Lieber

One possible treatment for cerebral aneurysms is a porous tubular structure, similar to a stent, called a flow diverter. A flow diverter can be placed across the neck of a cerebral aneurysm to induce the cessation of flow and initiate the formation of an intra-aneurysmal thrombus. This excludes the aneurysm from the parent artery and returns the flow of blood to normal. Previous flow diverting devices have been analyzed to determine optimal characteristics, such as braiding angle and wire diameter. From this information, a new optimized device was designed to achieve equivalent hemodynamic performance to the previous best device, but with better longitudinal flexibility to preserve physiological arterial configuration. The new device was tested in vitro in an elastomeric replica of the rabbit elastase induced aneurysm model and is now in the process of being tested in vivo. Particle image velocimetry was utilized to determine the velocity field in the plane of symmetry of the model under pulsatile flow conditions. Device hemodynamic performance indices such as the hydrodynamic circulation were evaluated from the velocity fields. Comparison of these indices with the previous best device and a control shows that the significant design changes of the device did not change its hemodynamic attributes (p > 0.05).


Author(s):  
J. Mark Erfe ◽  
S. Chris Malaisrie ◽  
Adin-Cristian Andrei ◽  
Duc T. Pham ◽  
Andrei Churyla ◽  
...  

Author(s):  
Ziying Chen ◽  
Flora Gordillo-Martinez ◽  
Lei Jiang ◽  
Pengcheng He ◽  
Wanzi Hong ◽  
...  

Abstract Aims Calcific aortic valve disease (CAVD) is the most common heart valve disease in the Western world. It has been reported that zinc is accumulated in calcified human aortic valves. However, whether zinc directly regulates CAVD is yet to be elucidated. The present study sought to determine the potential role of zinc in the pathogenesis of CAVD. Methods and results Using a combination of a human valve interstitial cell (hVIC) calcification model, human aortic valve tissues, and blood samples, we report that 20 μM zinc supplementation attenuates hVIC in vitro calcification, and that this is mediated through inhibition of apoptosis and osteogenic differentiation via the zinc-sensing receptor GPR39-dependent ERK1/2 signalling pathway. Furthermore, we report that GPR39 protein expression is dramatically reduced in calcified human aortic valves, and there is a significant reduction in zinc serum levels in patients with CAVD. Moreover, we reveal that 20 μM zinc treatment prevents the reduction of GPR39 observed in calcified hVICs. We also show that the zinc transporter ZIP13 and ZIP14 are significantly increased in hVICs in response to zinc treatment. Knockdown of ZIP13 or ZIP14 significantly inhibited hVIC in vitro calcification and osteogenic differentiation. Conclusions Together, these findings suggest that zinc is a novel inhibitor of CAVD, and report that zinc transporter ZIP13 and ZIP14 are important regulators of hVIC in vitro calcification and osteogenic differentiation. Zinc supplementation may offer a potential therapeutic strategy for CAVD.


1990 ◽  
Vol 23 (12) ◽  
pp. 1231-1238 ◽  
Author(s):  
H Nygaard ◽  
M Giersiepen ◽  
J.M Hasenkam ◽  
D Westphal ◽  
P.K Paulsen ◽  
...  

1988 ◽  
Vol 21 (3) ◽  
pp. 235-247 ◽  
Author(s):  
J.M. Hasenkam ◽  
D. Westphal ◽  
H. Nygaard ◽  
H. Reul ◽  
M. Giersiepen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document