scholarly journals Vibration control of semi-active suspension system with magnetorheological damper based on hyperbolic tangent model

2017 ◽  
Vol 9 (5) ◽  
pp. 168781401769458 ◽  
Author(s):  
Guoliang Hu ◽  
Qianjie Liu ◽  
Ruqi Ding ◽  
Gang Li
2020 ◽  
Vol 31 (9) ◽  
pp. 1157-1170 ◽  
Author(s):  
Van Ngoc Mai ◽  
Dal-Seong Yoon ◽  
Seung-Bok Choi ◽  
Gi-Woo Kim

This article presents vibration control of a semi-active quarter-car suspension system equipped with a magneto-rheological damper that provides the physical constraint of a damping force. In this study, model predictive control was designed to handle the constraints of control input (i.e. the limited damping force). The explicit solution of model predictive control was computed using multi-parametric programming to reduce the computational time for real-time implementation and then adopted in the semi-active suspension system. The control performance of model predictive control was compared with that of a clipped linear-quadratic optimal controller, where the damping force was bound using a standard saturation function. Two types of road conditions (bump and random excitation) were applied to the suspension system, and the vibration control performance was evaluated through both simulations and experiments.


2014 ◽  
Vol 699 ◽  
pp. 283-288
Author(s):  
Mohamad Hafiz Harun ◽  
Fauzi Ahmad ◽  
Mohd Razali Md Yunos ◽  
Ahmad Kamal Mat Yamin

Passenger ride comfort is an important factor in railway vehicle services. However, passenger ride comfort is sometimes affected by the vibrations resulting from the track irregularities. It will be critical when the track is exposed to prolonged sun’s heat and lack of track maintenance. This means that the optimization of passive suspension parameters alone could not cope with these cases. Semi-active suspension system for railway vehicles has been developed as a way to solve these problems. The technology of semi-active suspension is widely used especially in the railway vehicle application. Magnetorheological (MR) damper is one of the applications of the concept of semi-active suspension. However, there are a variety of criteria for MR dampers based on usage. To meet the requirements of railway vehicle suspension system, a MR damper have been developed. The criteria for the MR damper are obtained experimentally. Then, the model for the MR damper is developed using Interpolated Sixth Order Polynomial and validated by experimental. The MR damper model has shown improvement, especially in the railway vehicle dynamics performance.


Sign in / Sign up

Export Citation Format

Share Document