track maintenance
Recently Published Documents


TOTAL DOCUMENTS

243
(FIVE YEARS 56)

H-INDEX

20
(FIVE YEARS 4)

Author(s):  
Arash Bakhtiary ◽  
Saeed Mohammadzadeh ◽  
Jabbar Ali Zakeri ◽  
Ahmad Kasraei

Author(s):  
А. A.  PLUGIN ◽  
D. А. PLUGIN ◽  
S. V. MIROSHNICHENKO ◽  
O. A. KALININ ◽  
O. P. KRYKUN

Purpose. On the railways of Ukraine in some areas there is an intensive premature exit sleepers due to the formation of defects that can affect the safety of trains and cause significant material losses due to a single replacement of a significant number of sleepers. The purpose of the study is to establish the causes of damage reinforced concrete sleepers on a characteristic section of the railway with their intense premature exit. Methodology. The condition of reinforced concrete sleepers of SB3 type under unlined substrate fastenings on 324-332 km of the pair track of the Odnorobivka-Bukine section of the Southern Railway was studied, where since 2007 their intensive output was observed due to defects. Findings. It is established that for 15 years of operation, as 236.3 million tons were put into operation, about 2.8 % of sleepers were replaced due to defects (44 pieces per 1 km of track). Typical defects (damages), due to which the sleepers were removed from the track, were mainly 13.2 and 13.2 according to the classification of CP-0150 – cracks and fractures of sleepers, including ones with crushing concrete. These defects were preceded by the formation of a network of thin cracks on the visible surfaces of sleepers. 3 sleepers with an initial compressive strength of 68…77 MPa produced by the Korosten Reinforced Concrete Sleeper Plant and the Gnivan Special Reinforced Concrete Plant, removed from the track due to characteristic defects, were selected and investigated. Samples were selected from the sleepers, with the help of which there was determined the final strength of concrete and microscopic examinations, including luminescence flaw detection method, were performed. It was found that the network of cracks in sleepers is spatial, mostly developed mostly beneath their top edge, the least developed above the bottom edge, and causes a decrease in compressive strength of concrete by 47…72 %. It is noted that the destruction of concrete during loading occurred behind these cracks. On the inner surfaces of the cracks there are individual grains of aggregates, which have signs of active silica content, that together with the nature of the cracks may indicate that the cause of their formation is corrosion of concrete from the interaction of cement alkali with reactive aggregates. On the surfaces of the cracks in the lower part of the sleepers leaching products were found, apparently leached by electro migration, which may indicate that corrosion processes were promoted by leakage currents on electrified DC tracks. Originality Thus, in the study area, the main cause of defects, which caused the replacement of the sleepers – was the corrosion of concrete due to the interaction of cement alkali with reactive aggregates, promoted by leakage currents, as well as a small diagram of sleepers and the use of unlined anchor intermediate rail fasteners. Practical value. The results of the study allow to establish the causes of cracks and other damage in reinforced concrete sleepers during operation and, in turn, reduce the losses of fasteners manufacturers and sleepers from defects and complaints, optimize the total cost of track repairs and subsequent track maintenance due to rational purpose of track construction, reduction of damage and replacement of sleepers during track operation.


2021 ◽  
Vol 13 (20) ◽  
pp. 11444
Author(s):  
Martina Zeiner ◽  
Matthias Landgraf ◽  
Dieter Knabl ◽  
Bernhard Antony ◽  
Víctor Barrena Cárdenas ◽  
...  

Current railway track work machinery is mainly operated with diesel fuel. As a result, track maintenance of Austrian Federal Railways (OeBB) amounts to nearly 9000 t CO2 equivalent per year according to calculations from Graz University of Technology. OeBB’s total length of railway lines only accounts for 0.56% of the world’s length of lines. This indicates huge potential for mitigating greenhouse gas emissions considering the need for track maintenance worldwide. Environmental concerns have led to the introduction of alternative drives in the transport sector. Until now, R&D (Research & Development) of alternative propulsion technologies for track work machinery has been widely neglected. This paper examines the possibility of achieving zero direct emissions during maintenance and construction work in railways by switching to alternative drives. The goal is to analyze alternative propulsion solutions arising from the transport sector and to assess their applicability to track work machinery. Research results, together with a calculation tool, show that available battery technology is recommendable for energy demands lower than 300 kWh per construction shift. Hydrogen fuel cell technology is an alternative for energy demands higher than 800 kWh. For machinery with energy requirements in between, enhancements in battery technology are necessary and desirable for the coming years.


Author(s):  
Vladimir P. BELTIUKOV ◽  
◽  
Andrey V. ANDREEV ◽  

Objective: To determine the optimal elevation of the outer rail in a curved track section based on technical and economic criteria, calculating the life cycle cost using the methods of life cycle re-source management, risks, and reliability analysis (URRAN methodology). Methods: The authors used multivariate analysis, point estimation, the probability theory and mathematical statistics, the theory of reliability of technical systems, the URRAN methodology, field observations of the condi-tion of the curved track sections and the scope of work during their maintenance. Results: A model of the overhaul cycle of a curved track section has been developed. The dependences of the change in the intensity of the accumulation of faults and the cost of track maintenance during the overhaul cycle on the average values of undamped train accelerations when moving along the sur-veyed sections are presented. The optimal values of undamped acceleration are determined for various operating conditions of railway curves, which provide the minimum track maintenance costs. The authors have found that the minimum cost of the overhaul cycle is the factor for choos-ing the optimal undamped acceleration during the overhaul cycle. The optimal elevation of the out-er rail has been calculated and the actual values in the investigated sections have been analyzed. The method’s economic efficiency is calculated in the form of the ratio of the difference between the costs of the overhaul cycle for the actual and optimal elevations of the outer rail. Practical im-portance: Optimization of the elevation of the outer rail will enable minimizing the intensity of the accumulation of faults and, therefore, reduce the cost of maintenance on the track. The total cost of routine track maintenance will be reduced by 5–10 %.


Animals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2687
Author(s):  
David Eager ◽  
Imam Hossain ◽  
Karlos Ishac ◽  
Scott Robins

The University of Technology Sydney (UTS) has been working closely with the Australasian greyhound industry for more than 5 years to reduce greyhound race-related injuries. During this period, UTS has developed and deployed several different techniques including inertial measurement units, drones, high-frame-rate cameras, track geometric surveys, paw print analysis, track soil spring-force analysis, track maintenance data, race injury data, race computer simulation and modelling to assist in this task. During the period where the UTS recommendations have been adopted, the injury rate has dropped significantly. This has been achieved by animal welfare interventions that lower racing congestion, and lower transient forces and jerk rates the greyhounds experience during a race. This study investigated the use of a greyhound location tracing system where small and lightweight signal emitting devices were placed inside a pocket in the jackets of racing greyhounds. The system deployed an enhanced version of a player tracking system currently used to track the motion of human athletes. Greyhounds gallop at speeds of almost 20 m/s and are known to change their heading direction to exceed a yaw rate of 0.4 rad/s. The high magnitudes of velocity, acceleration and jerk posed significant technical challenges, as the greyhounds pushed the human tracking system beyond its original design limits. Clean race data gathered over a six-month period were analysed and presented for a typical 2-turn greyhound racing track. The data confirmed that on average, greyhounds ran along a path that resulted in the least energy wastage, which includes smooth non-linear paths that resemble easement curves at the transition between the straights to the semi-circular bends. This study also verified that the maximum jerk levels greyhounds experienced while racing were lower than the jerk levels that had been predicted with simulations and modelling for the track path. Furthermore, the results from this study show the possibility of such a systems deployment in data gathering in similar settings to greyhound racing such as thoroughbred and harness horse racing for understanding biomechanical kinematic performance.


Author(s):  
Mostafa Bababeik ◽  
Mohammad Farjadamin ◽  
Navid Khademi ◽  
Amir-Hossein Fani
Keyword(s):  

Author(s):  
Manu Sasidharan ◽  
Michael Peter Nicholas Burrow ◽  
Gurmel Singh Ghataora ◽  
Rishi Marathu

The provision of safe, efficient, reliable and affordable railway transport requires the railway track infrastructure to be maintained to an appropriate condition. Given the constrained budgets under which the infrastructure is managed, maintenance needs to be predicted in advance of track failure, prioritized and identified risks and uncertainties need to be considered within the decision-making process. This paper describes a risk-informed approach that can be used to economically justify railway track infrastructure conditions by comparing on a life-cycle basis infrastructure maintenance costs, train operating costs, travel time costs, safety, social and environmental impacts. The approach represents a step-change for the railway industry as it will enable economic maintenance standards to be derived which considers the needs of the infrastructure operator, but also those of users, train operating companies and the environment. Further, the risk-informed capability of the tool enables asset managers to deal with uncertainties associated with forecasting costs and the effects of track maintenance, and unavailability of data. The Monte Carlo simulation technique and a Fuzzy reasoning approach are used to address safety data uncertainties through probabilistic risk assessment allied to expert opinion. The approach is illustrated using data from three routes on the UK mainline railway network. The results demonstrate that the approach can be used to support strategic and tactical levels of railway asset management to inform plausible design and maintenance strategies that realise the maximum benefit for the available budget.


2021 ◽  
Vol 11 (12) ◽  
pp. 5334
Author(s):  
Pu Wang ◽  
Daolin Si ◽  
Shuguo Wang ◽  
Qiang Yi

Existing gage widening standards and the influence of gage widening on the curve passing performance of trains and rail wear were examined. The existing gage widening theory can determine the minimum curve radius that needs to be widened, the widening value required by curves with different radii, and whether multiaxle locomotives can pass small-radius curves. However, it does not quantify the influence of the gage widening value on the curve passing performance and track maintenance workload. The range of the minimum curve radius that needs to be widened is 220–350 m, whereas some countries adopt a radius of 600 m; the maximum gage widening range is 15–20 mm, and few countries adopt gage widening values exceeding 30 mm. When the gage widening value increases from 0 to 10 mm, the lateral force of the curved wheel or rail with a radius less than 300 m is reduced by 16–20%, and that with a radius exceeding 300 m is reduced by 10–15%. The results of this study reveal that using proper gage widening values can reduce the lateral force of the wheel or rail and improve the curve passing performance. In the rail lifecycle, the implementation of the current gage widening standard requires only one gage adjustment operation, whereas the implementation of the original gage widening standard requires doubling gage adjustment operations.


Author(s):  
Mahdieh Sedghi ◽  
Osmo Kauppila ◽  
Bjarne Bergquist ◽  
Erik Vanhatalo ◽  
Murat Kulahci

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3141
Author(s):  
Michalina Kamińska ◽  
Łukasz Rymaniak ◽  
Piotr Lijewski ◽  
Natalia Szymlet ◽  
Paweł Daszkiewicz ◽  
...  

The paper presents the investigations of exhaust emissions under actual operation of two rail vehicles: a track geometry vehicle and a clearance vehicle. The environmental assessment of this type of objects is difficult due to the necessity of adapting the measurement equipment and meeting the safety requirements during the tests (particularly regarding the distance from the overhead electrical lines). The authors have proposed and developed a unique research methodology, based on which a detailed exhaust emissions analysis (CO, HC, NOx, and PM) was carried out. The complex assessment included the unit and on-track exhaust emissions. In the analyses, the authors also included the operating conditions of the powertrains of the tested machinery. The obtained environmental indexes were referred to the homologation standards, according to which the vehicles were approved for operation. Due to the nature of operation of the tested vehicles, the authors carried out a comprehensive environmental assessment in the daily and annual approach as well as in the aspect of their operation as combined vehicles, which is a novel approach to the assessment of the environmental performance of this type of objects.


Sign in / Sign up

Export Citation Format

Share Document