scholarly journals Gear fault diagnosis using Autogram analysis

2018 ◽  
Vol 10 (12) ◽  
pp. 168781401881253 ◽  
Author(s):  
Adel Afia ◽  
Chemseddine Rahmoune ◽  
Djamel Benazzouz

Rotary machines consist of various devices such as gears, bearings, and shafts that operate simultaneously. As a result, vibration signals have nonlinear and non-stationary behavior, and the fault signature is always buried in overwhelming and interfering contents, especially in the early stages. As one of the most powerful non-stationary signal processing techniques, Kurtogram has been widely used to detect gear failure. Usually, vibration signals contain a relatively strong non-Gaussian noise which makes the defective frequencies non-dominant in the spectrum compared to the discrete components, which reduce the performance of the above method. Autogram is a new sophisticated enhancement of the conventional Kurtogram. The modern approach decomposes the data signal by Maximal Overlap Discrete Wavelet Packet Transform into frequency bands and central frequencies called nodes. Subsequently, the unbiased autocorrelation of the squared envelope for each node is computed to select the node with the highest kurtosis value. Finally, Fourier transform is applied to that squared envelope to extract the fault signature. In this article, the proposed method is tested and compared to Fast Kurtogram for gearbox fault diagnosis using experimental vibration signals. The experimental results improve the detectability of the proposed method and affirm its effectiveness.

2020 ◽  
Vol 12 (5) ◽  
pp. 168781402091659 ◽  
Author(s):  
Adel Afia ◽  
Chemseddine Rahmoune ◽  
Djamel Benazzouz ◽  
Boualem Merainani ◽  
Semcheddine Fedala

Nowadays, fault detection, identification, and classification seem to be the most difficult challenge for gear systems. It is a complex procedure because the defects affecting gears have the same frequency signature. Thus, the variation in load and speed of the rotating machine will, inevitably, lead to erroneous detection results. Moreover, it is important to discern the nature of the anomaly because each gear defect has several consequences on the mechanism’s performance. In this article, a new intelligent fault diagnosis approach consisting of Autogram combined with radial basis function neural network is proposed. Autogram is a new sophisticated enhancement of the conventional Kurtogram, while radial basis function is used for classification purposes of the gear state. According to this approach, the data signal is decomposed by maximal overlap discrete wavelet packet transform into frequency bands and central frequencies called nodes. Thereafter, the unbiased autocorrelation of the squared envelope for each node is computed in order to calculate the kurtosis for each one at every decomposition level. Finally, the feature matrix obtained from the previous step will be the input of the radial basis function neural network to provide a new automatic gear fault diagnosis technique. Experimental results from the gearbox with healthy state and five different types of gear defects under variable speeds and loads indicate that the proposed method can successfully detect, identify, and classify the gear faults in all cases.


2018 ◽  
Vol 2018 ◽  
pp. 1-29
Author(s):  
Fei Dong ◽  
Xiao Yu ◽  
Enjie Ding ◽  
Shoupeng Wu ◽  
Chunyang Fan ◽  
...  

In order to enhance the performance of bearing fault diagnosis and classification, features extraction and features dimensionality reduction have become more important. The original statistical feature set was calculated from single branch reconstruction vibration signals obtained by using maximal overlap discrete wavelet packet transform (MODWPT). In order to reduce redundancy information of original statistical feature set, features selection by adjusted rand index and sum of within-class mean deviations (FSASD) was proposed to select fault sensitive features. Furthermore, a modified features dimensionality reduction method, supervised neighborhood preserving embedding with label information (SNPEL), was proposed to realize low-dimensional representations for high-dimensional feature space. Finally, vibration signals collected from two experimental test rigs were employed to evaluate the performance of the proposed procedure. The results show that the effectiveness, adaptability, and superiority of the proposed procedure can serve as an intelligent bearing fault diagnosis system.


2014 ◽  
Vol 1014 ◽  
pp. 510-515 ◽  
Author(s):  
You Cai Xu ◽  
Xin Shi Li ◽  
Ran Tao ◽  
Shu Guo ◽  
Min Gou ◽  
...  

The time-domain energy message conveyed by vibration signals of different gear fault are different, so a method based on local mean decomposition (LMD) and variable predictive model-based class discriminate (VPMCD) is proposed to diagnose gear fault model. The vibration signal of gear which is the research object in this paper is decomposed into a series of product functions (PF) by LMD method. Then a further analysis is to select the PF components which contain main fault information of gear, the energy feature parameters of the selected PF components are used to form a fault feature vector. The variable predictive model-based class discriminate is a new multivariate classification approach for pattern recognition, through taking fully advantages of the fault feature vector. Finally, gear fault diagnosis is distinguished into normal state, inner race fault and outer race fault. The results show that LMD method can decompose a complex non-stationary signal into a number of PF components whose frequency is from high to low. And the method based on LMD and VPMCD has a high fault recognition function by analyzing the fault feature vector of PF.


Author(s):  
PARUL SHAH ◽  
S. N. MERCHANT ◽  
U. B. DESAI

This paper presents two methods for fusion of infrared (IR) and visible surveillance images. The first method combines Curvelet Transform (CT) with Discrete Wavelet Transform (DWT). As wavelets do not represent long edges well while curvelets are challenged with small features, our objective is to combine both to achieve better performance. The second approach uses Discrete Wavelet Packet Transform (DWPT), which provides multiresolution in high frequency band as well and hence helps in handling edges better. The performance of the proposed methods have been extensively tested for a number of multimodal surveillance images and compared with various existing transform domain fusion methods. Experimental results show that evaluation based on entropy, gradient, contrast etc., the criteria normally used, are not enough, as in some cases, these criteria are not consistent with the visual quality. It also demonstrates that the Petrovic and Xydeas image fusion metric is a more appropriate criterion for fusion of IR and visible images, as in all the tested fused images, visual quality agrees with the Petrovic and Xydeas metric evaluation. The analysis shows that there is significant increase in the quality of fused image, both visually and quantitatively. The major achievement of the proposed fusion methods is its reduced artifacts, one of the most desired feature for fusion used in surveillance applications.


2011 ◽  
Vol 130-134 ◽  
pp. 1681-1685 ◽  
Author(s):  
Guang Tian ◽  
Hao Tian ◽  
Guang Sheng Liu ◽  
Jin Hui Zhao ◽  
Li Ping Luo

The diagnosis of compound-fault is always a difficult point, and there is not an effective method in equipment diagnosis field, then a new method of compound-fault diagnosis was presented. The vibration signals at start-up in the gearbox are non-stationary signals, and traditional ways of diagnosis have low precision. Order tracking and wavelet packet and rough sets theory are introduced in the compound-fault diagnosis of bearing. First, the vibration signals at start-up were resampled using computer order tracking arithmetic and equal angle distributed vibration signals were obtained, and wavelet packet has been used for equal angle distributed vibration signals decomposition and reconstruction. Then, energy distribution of every frequency band can be calculated according to normalization process. A new feature vector can be obtained, then clear and concise decision rules can be obtained by rough sets theory. Finally, the result of compound-fault example proves that the proposed method has high validity and more amplitude appliance foreground.


2005 ◽  
Vol 293-294 ◽  
pp. 183-192 ◽  
Author(s):  
Yanyang Zi ◽  
Xue Feng Chen ◽  
Zheng Jia He ◽  
Peng Chen

Wavelet transform is a powerful technique well suited to non-stationary signal processing. The properties of wavelet are determined by its basis function. In the fields of modal analysis, mechanical condition monitoring and fault diagnosis, impulse responses or transient responses are very common signals to be analyzed. The Laplace wavelet is a single-sided damped exponential wavelet and is a desirable wavelet basis to analyze signals of impulse response. A correlation filtering approach is introduced using the Laplace wavelet to identify the impulse response from vibration signals. Successful results are obtained in identifying the natural frequency of a hydro-generator shaft, and diagnosing the wear fault of intake valve of an internal combustion engine.


Sign in / Sign up

Export Citation Format

Share Document