intake valve
Recently Published Documents


TOTAL DOCUMENTS

385
(FIVE YEARS 58)

H-INDEX

23
(FIVE YEARS 4)

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 398
Author(s):  
Alfredas Rimkus ◽  
Tadas Vipartas ◽  
Donatas Kriaučiūnas ◽  
Jonas Matijošius ◽  
Tadas Ragauskas

To reduce the greenhouse effect, it is important to reduce not only carbon dioxide but also methane emissions. Methane gas can be not only a fossil fuel (natural gas) but also a renewable energy source when it is extracted from biomass. After biogas has been purified, its properties become closer to those of natural gas or methane. Natural gas is an alternative energy source that can be used for spark-ignition engines, but its physicochemical properties are different from those of gasoline, and the spark-ignition engine control parameters need to be adjusted. This article presents the results of a study that considers a spark-ignition engine operating at different speeds (2000 rpm, 2500 rpm, and 3000 rpm) and the regulation of the timing of intake valve closure when the throttle is partially open (15%), allowing the engine to maintain the stoichiometric air–fuel mixture and constant spark timing. Studies have shown a reduction in engine break torque when petrol was replaced by natural gas, but break thermal efficiency has increased and specific emissions of pollutants (NOx, HC, CO2 (g/kWh)) have decreased. The analysis of the combustion process by the AVL BOOST program revealed different results when the engine ran on gasoline as opposed to when it ran on natural gas when the timing of intake valve closure changed. The volumetric efficiency of the engine and the speed of the combustion process, which are significant for engine performance due to the different properties of gasoline and natural gas fuels, can be partially offset by adjusting the spark timing and timing of intake valve closure. The effect of intake valve timing on engine fueled by natural gas more noticeable at lower engine speeds when the engine load is low.


2022 ◽  
Vol 14 (1) ◽  
pp. 168781402110709
Author(s):  
Ming Wen ◽  
Yufeng Li ◽  
Xiaojuan Li ◽  
Jinlong Liu ◽  
Juting Fan

With the increase of the engine intensified degree, mechanical load and thermal load become to the two main factors limiting the engine to intensify. Application of Miller cycle, which can be realized by late intake valve closing (LIVC) and deeper late intake valve closing (DLIVC), has the potential to reduce the effective CR, mechanical load, and thermal load. In this paper, the effects of LIVC and DLIVC on the mechanical load and thermal load of a boosted DI diesel are experimentally compared. Compared to the original base case, the average cylinder temperature of LIVC and DLIVC is reduced by 90 and 52 K. The exhaust temperature of LIVC and DLIVC decreased by 26 and 14 K, and the maximum combustion pressure of LIVC and DLIVC decreased by 1.6 and 9.7 bar. The pumping losses of LIVC and DLIVC are reduced by more than 25%, while the actual cycle power does not decrease due to the late closing of the inlet valve. The fuel consumption rate decreased from 250.1 g/kWh of base case to 240 g/kWh of LIVC, reduced by 4.0%. The indicated thermal efficiency increased from 41.9% of base case to 43.7% and 42.5% of LIVC and DLIVC. Miller loss is only 2.55% with Miller inlet phase.


2022 ◽  
Vol 960 (1) ◽  
pp. 012014
Author(s):  
P Punov ◽  
M Niculae ◽  
A Clenci ◽  
S. Mihalkov ◽  
V Iorga-Siman ◽  
...  

Abstract The article presents the results of a 1D numerical simulation of a spark ignition engine developed to operate in Miller cycle. Miller cycle offers better thermal efficiency compared to Otto cycle due to higher volumetric expansion than compression, which in the current context is of paramount importance. In an engine with fixed geometric compression ratio, Miller cycle operation could be realized by means of either early intake valve closing (EIVC) or late intake valve closing (LIVC). Both cases lead however to a lower volumetric efficiency, thus reducing the indicating mean effective pressure, which in its turn results to a lower power output. The simulation’s aim is not only to assess the impact of implementing the Miller cycle but also to obtain the necessary results for imposing the boundary conditions in a 3D CFD simulation whose purpose is to analyse the influence of the Miller cycle on the internal aerodynamics of the engine.


2021 ◽  
pp. 146808742110653
Author(s):  
Jingchen Cui ◽  
Liping Chen ◽  
Wuqiang Long ◽  
Xiangyu Meng ◽  
Bo Li ◽  
...  

A variable valvetrain system is the key part of the variable stroke engine (VSE), which could achieve higher power performance and low-speed torque. An innovative axial shift valvetrain system (ASVS) was put forward to meet the air-charging requirements of a 2/4-stroke engine and complete a changeover within one working cycle. Two sets of intake and exhaust cam profiles for both intake and exhaust sides in the 2/4-stoke mode were designed for 2/4-stoke modes. Furthermore, a simulation model based on ADAMS was established to evaluate the dynamic valve motion and the contact force at different engine speeds. The dynamic simulation results show that the valve motion characteristics meet the challenges at the target engine speed of 3000 r/min. In two-stroke mode, the maximum intake valve lift could achieve 7.3 mm within 78°CaA, and the maximum exhaust valve lift could achieve 7.5 within 82°CaA on the exhaust side. In four-stroke mode, the maximum intake valve lift can achieve 8.8 mm within 140°CaA, and the maximum exhaust valve lift can achieve 8.4 mm within 140°CaA. The valve seating speeds are less than 0.3 m/s in both modes, and the fullness coefficients are more than 0.5 and 0.6 in the 2-stroke and 4-stroke mode, respectively. At the engine speed of 3000 r/min, the contact force on each component is acceptable, and the stress between cam and roller can meet the material requirement.


2021 ◽  
pp. 146808742110593
Author(s):  
Erick Garcia ◽  
Vassilis Triantopoulos ◽  
Joseph Trzaska ◽  
Maxwell Taylor ◽  
Jian Li ◽  
...  

This study experimentally investigates the impact of extreme Miller cycle strategies paired with high intake manifold pressures on the combustion process, emissions, and thermal efficiency of heavy-duty diesel engines. Well-controlled experiments isolating the effect of Miller cycle strategies on the combustion process were conducted at constant engine speed and load (1160 rpm, 1.76 MPa net IMEP) on a single cylinder research engine equipped with a fully-flexible hydraulic valve train system. Late intake valve closing (LIVC) timing strategies were compared to a conventional intake valve profile under either constant cylinder composition, constant engine-out NOx emission, or constant overall turbocharger efficiency ([Formula: see text]) to investigate the operating constraints that favor Miller cycle operation over the baseline strategy. Utilizing high boost with conventional intake valve closing timing resulted in improved fuel consumption at the expense of sharp increases in peak cylinder pressures, engine-out NOx emissions, and reduced exhaust temperatures. Miller cycle without EGR at constant [Formula: see text] demonstrated LIVC strategies effectively reduce engine-out NOx emissions by up to 35%. However, Miller cycle associated with very aggressive LIVC timings led to fuel consumption penalties due to increased pumping work and exhaust enthalpy. LIVC strategies allowed for increased charge dilution at the baseline NOx constraint of 3.2 g/kWh, resulting in significant fuel consumption benefits over the baseline case without compromising exhaust temperatures or peak cylinder pressures. As Miller cycle implementation was shown to affect the boundary conditions dictating [Formula: see text], the LIVC and conventional IVC cases were studied at an equivalent [Formula: see text] point representative of high boost operation. With high boost, LIVC yielded reduced NOx emissions, reduced peak cylinder pressures, and elevated exhaust temperatures compared to the conventional IVC case without compromising fuel consumption.


2021 ◽  
Vol 13 (12) ◽  
pp. 168781402110671
Author(s):  
Wei Duan ◽  
Zhaoming Huang ◽  
Hong Chen ◽  
Ping Tang ◽  
Li Wang ◽  
...  

Pre-chamber jet ignition is a promising way to improve fuel consumption of gasoline engine. A small volume passive pre-chamber was tested at a 1.5L turbocharged GDI engine. Combustion and emission characteristics of passive pre-chamber at low-speed WOT and part load were studied. Besides, the combustion stability of the passive pre-chamber at idle operation has also been studied. The results show that at 1500 r/min WOT, compared with the traditional spark ignition, the combustion phase of pre-chamber is advanced by 7.1°CA, the effective fuel consumption is reduced by 24 g/kW h, and the maximum pressure rise rate is increased by 0.09 MPa/°CA. The knock tendency can be relieved by pre-chamber ignition. At part load of 2000 r/min, pre-chamber ignition can enhance the combustion process and improve the combustion stability. The fuel consumption of pre-chamber ignition increases slightly at low load, but decreases significantly at high load. Compared with the traditional spark ignition, the NOx emissions of pre-chamber increase significantly, with a maximum increase of about 15%; the HC emissions decrease, and the highest decrease is about 36%. But there is no significant difference in CO emissions between pre-chamber ignition and spark plug ignition. The intake valve opening timing has a significant influence on the pre-chamber combustion stability at idle operation. With the delay of the pre-chamber intake valve opening timing, the CoV is reduced and can be kept within the CoV limit.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7419
Author(s):  
Seungmin Kim ◽  
Jaesam Shim ◽  
Youngsoo Cho ◽  
Back-Sub Sung ◽  
Jungsoo Park

The main purpose of this study is to optimize engine performance and emission characteristics of off-road engines with retarded spark timing compared to MBT by repurposing the existing passenger engine. This study uses a one-dimensional (1D)-simulation to develop a non-road gasoline MPI turbo engine. The SI turbulent flame model of the GT-suite, an operational performance predictable program, presents turbocharger matching and optimal operation design points. To optimize the engine performance, the SI turbulent model uses three operation parameters: spark timing, intake valve overlap, and boost pressure. Spark timing determines the initial state of combustion and thermal efficiency, and is the main variable of the engine. The maximum brake torque (MBT) point can be identified for spark timing, and abnormal combustion phenomena, such as knocking, can be identified. Spark timing is related to engine performance, and emissions of exhaust pollutants are predictable. If the spark timing is set to variables, the engine performance and emissions can be confirmed and predicted. The intake valve overlap can predict the performance and exhaust gas by controlling the airflow and combustion chamber flow, and can control the performance of the engine by controlling the flow in the cylinder. In addition, a criterion can be set to consider the optimum operating point of the non-road vehicle while investigating the performance and exhaust gas emissions accompanying changes in boost pressure With these parameters, the design of experiment (DoE) of the 1D-simulation is performed, and the driving performance and knocking phenomenon for each RPM are predicted during the wide open throttle (WOT) of the gasoline MPI Turbo SI engine. The multi-objective Pareto technique is also used to optimize engine performance and exhaust gas emissions, and to present optimized design points for the target engine, the downsized gasoline MPI Turbo SI engine. The results of the Pareto optimal solution showed a maximum torque increase of 12.78% and a NOx decrease of 54.31%.


2021 ◽  
Author(s):  
Brent Shoffner ◽  
Brandon Cloud ◽  
Alexander Kulinowski ◽  
Thomas Hayden ◽  
Colleen Stevens
Keyword(s):  

Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5324
Author(s):  
Marcellin Perceau ◽  
Philippe Guibert ◽  
Stéphane Guilain

The current article presents a method to reconstruct the mean velocity field of a cyclic flow for an input parameter value that has not been measured, allowing for the number of tests to be reduced. It is applied to the tumble flow of a gasoline engine following a Miller cycle. New engines often include variable valve timing (VVT) systems to maximize the efficiency of such over-expanded cycles for different operating points. The reconstruction was thus carried out using different offset values of the intake valve lift timing. Experimental data were collected from a transparent engine in an early intake valve closing (EIVC) configuration using particle image velocimetry (PIV). The mean velocity field reconstruction was based on the interpolation of the proper orthogonal decomposition (POD) coefficients. The accuracy of the method was evaluated at different points by comparing the interpolated and the measured flow fields. The accuracy was estimated by calculating the error in the rotation rate of the tumble and the position of its center of rotation. The new mean velocity field set allowed for the position of the tumble’s center of rotation to be closely tracked according to the input parameter and a rotation rate map to be made. Some results on Miller’s cycle could thus be found and the data generated could guide future developments.


2021 ◽  
pp. 146808742110346
Author(s):  
V Vikraman ◽  
K Anand ◽  
A Ramesh

Combined in-cylinder and after-treatment emission control methods are generally adopted to meet the current stringent emission targets for diesel engines. It is well established that reducing the geometric compression ratio (CR) results in a simultaneous reduction in the oxides of nitrogen (NOx) and soot emissions in diesel engines. However, poor cold-start characteristics prevent extensive use of low compression ratio (LCR) diesel engines for automotive applications. In the present work, a novel extremely delayed intake valve opening (IVO) strategy is proposed to improve the cold-start characteristics of a light-duty LCR diesel engine. A commercial one-dimensional gas-exchange model was used to optimize the intake valve open and close timings. The results corresponding to a cranking speed of 200 rpm and ambient temperature of 0°C show that advancing the intake valve close (IVC) timing increases the effective compression stroke that can improve the cylinder temperature by 5%. Further, implementing ‘extremely delayed IVO’ by retarding the timing from 1°CA to 61°CA aTDC could help to further increase the cylinder temperature by 14% compared to the base timings. The delayed opening of the intake valve leads to a higher expansion of the cylinder mass, leading to a lower cylinder pressure before IVO and a higher intake air velocity immediately after IVO. With the higher intake air velocity, the incoming air’s kinetic energy is dissipated to increase the stagnation temperature, resulting in an overall benefit in cylinder temperature. The experimental measurements conducted in a cold chamber with the optimized IVO and IVC timings confirmed the benefits by achieving a better cold-startability of the LCR engine. In comparison, the LCR engine with the stock valve timings could be started only up to +5°C, the optimized valve timings could ensure startability up to −10°C without any starting aids. Thus, the proposed approach of adopting the optimized valve timings can help LCR diesel engines to overcome the limitations of cold-startability.


Sign in / Sign up

Export Citation Format

Share Document