scholarly journals The selection of key temperature measurement points for thermal error modeling of heavy-duty computer numerical control machine tools with density peaks clustering

2019 ◽  
Vol 11 (4) ◽  
pp. 168781401983951
Author(s):  
Zude Zhou ◽  
Jianmin Hu ◽  
Quan Liu ◽  
Ping Lou ◽  
Junwei Yan ◽  
...  
2011 ◽  
Vol 188 ◽  
pp. 171-174
Author(s):  
Gang Wei Cui ◽  
D. Gao ◽  
L. Wang ◽  
Y.X. Yao

One of the difficult issues in thermal error modeling is to select appropriate temperature variables. In this paper, two selection strategies are introduced to overcome this difficulty. After measuring the temperatures and thermal errors of a heavy-duty CNC milling-boring machine tool by a laser tracker, four temperature variables which are the foundation of thermal error modeling are selected for each feed axis from fifteen temperature variables according to major factor strategy and non-interrelated strategy.


Author(s):  
Pu-Ling Liu ◽  
Zheng-Chun Du ◽  
Hui-Min Li ◽  
Ming Deng ◽  
Xiao-Bing Feng ◽  
...  

AbstractThe machining accuracy of computer numerical control machine tools has always been a focus of the manufacturing industry. Among all errors, thermal error affects the machining accuracy considerably. Because of the significant impact of Industry 4.0 on machine tools, existing thermal error modeling methods have encountered unprecedented challenges in terms of model complexity and capability of dealing with a large number of time series data. A thermal error modeling method is proposed based on bidirectional long short-term memory (BiLSTM) deep learning, which has good learning ability and a strong capability to handle a large group of dynamic data. A four-layer model framework that includes BiLSTM, a feedforward neural network, and the max pooling is constructed. An elaborately designed algorithm is proposed for better and faster model training. The window length of the input sequence is selected based on the phase space reconstruction of the time series. The model prediction accuracy and model robustness were verified experimentally by three validation tests in which thermal errors predicted by the proposed model were compensated for real workpiece cutting. The average depth variation of the workpiece was reduced from approximately 50 µm to less than 2 µm after compensation. The reduction in maximum depth variation was more than 85%. The proposed model was proved to be feasible and effective for improving machining accuracy significantly.


2014 ◽  
Vol 1014 ◽  
pp. 67-70
Author(s):  
Jia Jun Ding

The operation panel of numerical control machine tools is an interactive interface between numerical control machine tools and opertators. In order to operation specification and easy to operating , based on ergonomics, by intergating the traditional operation panel of numerical control machine tools with computer keyboard , we design a novel operation panel of numerical control machine tools based on the traditional numerical control machine tools. By operating on the novel operation panel, the results the operation of the novel panel is easy and specified.


Sign in / Sign up

Export Citation Format

Share Document