scholarly journals Suspension parameter design of underframe equipment considering series stiffness of shock absorber

2020 ◽  
Vol 12 (5) ◽  
pp. 168781402092264
Author(s):  
Jie Chen ◽  
Yangjun Wu ◽  
Xiaolong He ◽  
Limin Zhang ◽  
Shijie Dong

In this article, a vertical rigid–flexible coupling model between the vehicle and the equipment is established. Considering the series stiffness of hydraulic shock absorbers, the underframe equipment is like a three-element-type Maxwell model dynamic vibration absorber. The carbody is approximated by an elastic beam and the three-element-type dynamic vibration absorber for general beam system was studied by fixed-point theory. The analytical solution of the optimal suspension parameters for the beam system subjected to harmonic excitation is obtained. The dynamic vibration absorber theory is applied to reduce the resonance of the carbody and to design the suspension parameters of the underframe equipment accordingly. Then, the railway vehicle model was established by multi-body dynamics simulation software, and the vibration levels of the vehicle at different speeds were calculated. A comparative analysis was made between the vehicles whose underframe equipment was suspended by the three-element-type dynamic vibration absorber model and the Kelvin–Voigt-type dynamic vibration absorber model, respectively. The results show that, compared with the vehicle whose underframe equipment is suspended by the Kelvin–Voigt-type dynamic vibration absorber model, the vehicle whose underframe equipment is suspended by the three-element-type dynamic vibration absorber model can achieve a much better ride quality and root mean square value of the vibration acceleration of the carbody. The carbody elastic vibration can be reduced and the vehicle ride quality can be improved effectively using the designed absorber.

Author(s):  
Yongpeng Wen ◽  
Qian Sun ◽  
Yu Zou ◽  
Haoming You

Magnetorheological elastomer is a new kind of intelligent material that mainly incorporates micron-sized ferromagnetic particles into a polymer. A dynamic vibration absorber that is based on the controllable shear modulus of magnetorheological elastomer is widely used in vibration systems. In the study, a flexible carbody model with a magnetorheological elastomer dynamic vibration absorber is established. A design method of a semiactive dynamic vibration absorber that is based on magnetorheological elastomer is introduced, and the operational principle of the semiactive dynamic vibration absorber is also discussed. To improve the vibration absorption performance of the magnetorheological elastomer dynamic vibration absorber, via multiple regression analysis, the optimal design frequency expressions for both the rigid vibration and the elastic vibration of the carbody are fitted. Parameter determination for the magnetorheological elastomer dynamic vibration absorber is investigated in detail. Then, the effects on the rigid vibration and the elastic vibration with the magnetorheological elastomer vibration absorber both with the passive vibration absorber and without a vibration absorber are analyzed. Finally, Sperling’s riding index is used to evaluate the feasibility and the performance of the magnetorheological elastomer dynamic vibration absorber in a practical application. The results demonstrate that the vibration of the carbody can be effectively reduced by using the magnetorheological elastomer dynamic vibration absorber instead of the dynamic vibration absorber without the magnetorheological elastomer. The magnetorheological elastomer dynamic vibration absorber that is modified by the optimum frequency provides superior vibration reduction performance and improves the riding quality of the railway vehicle.


Author(s):  
Qunsheng Wang ◽  
Jing Zeng ◽  
Lai Wei ◽  
Cheng Zhou ◽  
Bin Zhu

A field test on the dynamic performance of a 100% low-floor railway train with five cars was conducted, and a vertical vibration at around 8 Hz was mainly studied for the background of the research. The vibration around 8 Hz, defined as the abnormal vertical vibration, was proved to be due to the pitching motion of the carbodies, which significantly affected the dynamic performance of the vehicle with a maximum increase of 0.309 in the vertical Sperling index. The dynamic vibration absorber theory was applied to reduce the abnormal vibration of carbodies to around 8 Hz by building a vertical mathematic model and a three-dimensional dynamical simulation model. The results of the theoretical analysis show that the stiffness of the articulated device between carbodies is the reason for the pitching motions at around 8 Hz, and the stiffness significantly affects the main frequency of the vertical vibration of carbodies. What’s more, the application of dynamic vibration absorber theory on low-floor railway trains can reduce the vertical abnormal vibration effectively. Yet, reasonable suspension parameters are needed; otherwise, the vibration of carbodies, including the mass ratio, the suspension frequency, the damping ratio, and the suspended location would be aggravated. Optimal suspension parameters of the dynamic vibration absorber system were used in the simulation model, and the result shows a good agreement with the numerical results; the attached dynamic vibration absorber system on carbodies significantly reduces the vibration of carbodies at around 8 Hz. However, it should be noted that the dynamic vibration absorber is only effective at high-speed stage (beyond 40 km/h) where the pitching motion of carbodies is obvious; this conclusion is consistent with the results of the field test.


1999 ◽  
Vol 121 (3) ◽  
pp. 334-342 ◽  
Author(s):  
Toshihiko Asami ◽  
Osamu Nishihara

In this paper, we propose a dynamic vibration absorber (DVA) with an air damper consisting of a piston and a cylinder. First, it will be shown that the air damper can conveniently be represented by the Maxwell model where a spring element and a dashpot are connected in series. The air damper has no ability to return the piston to its original position. For this reason, it is necessary for the piston to be supported by a spring which is placed in parallel with the damper. The air damped DVA can then be modeled by the three-element model. Many studies have been done on the Voigt type of DVA, and the accurate expressions of optimum tuning and damping parameters have already been derived by Hahnkamm and Brock et al. However, only a few papers have been published on the three-element type of DVA, and reliable expressions for it have not been derived until now. Therefore, we began our work by trying to derive expressions for optimum parameters of the three-element type of DVA. It was clear that the optimized three-element type of DVA is superior to the conventional Voigt type of DVA. The optimum parameters which we obtained from our expressions were tested on a vibratory model. The experiments showed that the our expression is very useful for designing the air damped DVA.


2019 ◽  
Vol 52 (15) ◽  
pp. 531-536
Author(s):  
Takeshi Mizuno ◽  
Takahito Iida ◽  
Yuji Ishino ◽  
Masaya Takasaki ◽  
Daisuke Yamaguchi

Sign in / Sign up

Export Citation Format

Share Document