scholarly journals Understanding the thermal problem of variable gradient functionally graded plate based on hybrid numerical method under linear heat source

2021 ◽  
Vol 13 (5) ◽  
pp. 168781402110178
Author(s):  
Jianhui Tian ◽  
Guoquan Jing ◽  
Xingben Han ◽  
Guangchu Hu ◽  
Shilin Huo

The thermal problem of functionally graded materials (FGM) under linear heat source is studied by a hybrid numerical method. The accuracy of the analytical method and the efficiency of the finite element method are taken into account. The volume fraction of FGM in the thickness direction can be changed by changing the gradient parameters. Based on the weighted residual method, the heat conduction equation under the third boundary condition is established. The temperature distribution of FGM under the action of linear heat source is obtained by Fourier transform. The results show that the closer to the heat source it is, the greater the influence of the heat source is and the influence of the heat source is local. The temperature change trend of the observation points is consistent with the heat source, showing a linear change. The results also show that the higher the value of gradient parameter is, the higher the temperature of location point is. The temperature distribution of observation points is positively correlated with gradient parameter. When the gradient parameter value exceeds a certain value, it has a little effect on the temperature change in the model and the heat conduction in the model tends to be pure metal heat conduction, the optimal gradient parameters combined the thermal insulation property of ceramics and the high strength toughness of metals are obtained.

2014 ◽  
Vol 13 (8) ◽  
pp. 1957-1964
Author(s):  
Raluca Teodosiu ◽  
Lidia Niculita ◽  
Catalin Teodosiu

2007 ◽  
Vol 04 (04) ◽  
pp. 603-619 ◽  
Author(s):  
S. M. HAMZA-CHERIF ◽  
A. HOUMAT ◽  
A. HADJOUI

The h-p version of the finite element method (FEM) is considered to determine the transient temperature distribution in functionally graded materials (FGM). The h-p version may be regarded as the marriage of conventional h-version and p-version. The graded Fourier p-element is used to set up the two-dimensional heat conduction equations. The temperature is formulated in terms of linear shape functions used generally in FEM plus a variable number of trigonometric shape functions representing the internal degrees of freedom (DOF). In the graded Fourier p-element, the function of the thermal conductivity is computed exactly within the conductance matrix and thus overcomes the computational errors caused by the space discretization introduced by the FEM. Explicit and easily programmed trigonometric enriched capacitance, conductance matrices and heat load vectors are derived for plates and cylinders by using symbolic computation. The convergence properties of the h-p version proposed and the results of the numbers of test problems are in good agreement with the analytical solutions. Also, the effect of the non-homogeneity of the FGM on the temperature distribution is considered.


Measurement ◽  
2019 ◽  
Vol 148 ◽  
pp. 106974 ◽  
Author(s):  
Jiang Chen ◽  
Feng Xiong ◽  
Junli Zheng ◽  
Qi Ge ◽  
Fei Cheng

1979 ◽  
Vol 101 (1) ◽  
pp. 20-27
Author(s):  
P. J. Closmann ◽  
E. R. Jones ◽  
E. A. Vogel

The effect of heat conduction on temperature along the wall of a well casing has been determined by solution of the equations of heat conduction. The casing was assumed to pass vertically through a planar heat source of constant temperature. The casing and formation were assumed to be in perfect thermal contact. Numerical results were obtained for two sizes of steel casing and one size of aluminum casing. At any given distance from the heat source, the casing temperature differs most at early times from the formation temperature computed in the absence of casing. This difference decreases rapidly with time. Furthermore, the maximum difference occurs at greater distances from the heat source as time increases. In general, after about three months of heating, errors in measured temperatures due to conduction along the casing wall are negligible.


Sign in / Sign up

Export Citation Format

Share Document