scholarly journals Adaptive sliding mode fault-tolerant control for hypersonic vehicle based on radial basis function neural networks

2017 ◽  
Vol 14 (3) ◽  
pp. 172988141667378 ◽  
Author(s):  
Rongyu Zhai ◽  
Ruiyun Qi ◽  
Bin Jiang
2021 ◽  
Author(s):  
Phu-Cuong Pham ◽  
Yong-Lin Kuo

Abstract This paper proposes a novel robust proportional derivative adaptive non-singular synergetic control (PDATS) for the delta robot system. A proposal radial basis function approximation neural networks (RBF) compensates for external disturbances and uncertainty parameters. To counteract the chattering noise of the low-resolution encoder, a second-order sliding mode (SOSM) observer in the feedback loop showed the ability to obtain the angular velocity estimations. The stability of the PDATS approach is proven using the Lyapunov stability theory. Both the simulation and experiment result effectiveness and performances of the PDATS controller in trajectory; pick and place operations of a parallel delta robot. The characteristics of the controller demonstrate that the proposed method can effectively reduce external disturbance and uncertainty parameters of the robot by a convergent finite-time, and provide higher accuracy in comparison with finite-time synergetic control and PD control.


2018 ◽  
Vol 10 (9) ◽  
pp. 168781401879552 ◽  
Author(s):  
Lili Wan ◽  
Yixin Su ◽  
Huajun Zhang ◽  
Yongchuan Tang ◽  
Binghua Shi

Unmanned surface vehicle has the properties such as complexity, nonlinearity, time variability, and uncertainty, which lead to the difficulty of obtaining a precise kinematics model. A neural adaptive sliding mode controller for the unmanned surface vehicle steering system is developed based on the sliding mode control technique and the radial basis function neural network. In the new approach, two parallel radial basis function neural networks are used to reduce the influence of the system uncertainties and eliminate the dependency of the controller on the precise kinematics model of the system. Among these two radial basis function neural networks, one is used to approximate the unknown nonlinear yaw dynamics and the other is used to adjust the control gain as well as realize the variable gain sliding mode control. The weights of the two neural networks are trained online using the sliding surface variable and the control, where the Lyapunov method is used to derive the adaptive laws to ensure the stability of the whole closed-loop system. The proposed adaptive controller is suitable for the steering control at different cruising speeds with bounded external disturbances. The simulation results show that the proposed controller has a good control performance regarding the smooth control, fast response, and high accuracy.


Author(s):  
Guodong Cui ◽  
Bin Cai ◽  
Baili Su ◽  
Xiaoguang Chu

The maglev yaw system of wind turbines adopts maglev-driving technology instead of traditional gear-driving technology. It has many advantages, such as no lubrication, simple structure, and high reliability. However, the stable suspension control of maglev yaw system is difficult to achieve due to the unknown disturbance caused by crosswind in a practical environment. In this article, an adaptive sliding mode cascade controller based on radial basis function neural network is proposed for the stable suspension control of maglev yaw system. First, the dynamic mathematical model of maglev yaw system is established. Second, an adaptive sliding mode robust controller using radial basis function neural network is designed as the outer loop air gap tracking controller for precise position control, where radial basis function neural network is employed to estimate the unknown parameter containing disturbance. To eliminate the limitation of the traditional exponential approach law based on sign function in the sliding mode control, an exponential reaching law based on hyperbolic tangent function is introduced to guarantee the smooth suspension control of maglev yaw system. Third, an adaptive controller as the inner loop current tracking controller is designed. Finally, the corresponding simulations and analysis are carried out. The simulation results show that the proposed controller can guarantee the suspension stability of maglev yaw system and suppress the disturbance effectively. Compared with the cascade proportional–integral–derivative controller and improved double power reaching law integral sliding mode controller, the proposed controller has a faster dynamic response and stronger robustness in the presence of unknown external disturbance.


Author(s):  
Jin Wang ◽  
Anbang Zhai ◽  
Fan Xu ◽  
Haiyun Zhang ◽  
Guodong Lu

The problem of simultaneous position and internal force control is discussed with cooperative manipulators system under variable load and dynamic uncertainties in this study. A position synchronized sliding mode controller is proposed in the presence of variable load, as well as modeling uncertainties, joint friction, and external disturbances. To deal with the complex situation brought by variable load, virtual synchronization coupled errors are introduced for internal force tracking control and joint synchronization in the meantime. Dual feedforward neural networks are adopted, where a radial basis function-neural network based dynamic compensator and a radial basis function-neural network based internal force estimator are established, respectively, so that precise dynamic knowledge and force measurement are out of demand through their cooperation. Together with simulation studies and analysis, the position and internal force errors are shown to converge asymptotically to zero. Using Lyapunov stability approach, the proposed controller is proven to be robust in face of variable external load and the aforementioned uncertainties.


Sign in / Sign up

Export Citation Format

Share Document