scholarly journals Design and sample size considerations for Alzheimer’s disease prevention trials using multistate models

2019 ◽  
Vol 16 (2) ◽  
pp. 111-119 ◽  
Author(s):  
Ron Brookmeyer ◽  
Nada Abdalla

Background/Aims Clinical trials for Alzheimer’s disease have been aimed primarily at persons who have cognitive symptoms at enrollment. However, researchers are now recognizing that the pathophysiological process of Alzheimer’s disease begins years, if not decades, prior to the onset of clinical symptoms. Successful intervention may require intervening early in the disease process. Critical issues arise in designing clinical trials for primary and secondary prevention of Alzheimer’s disease including determination of sample sizes and follow-up duration. We address a number of these issues through application of a unifying multistate model for the preclinical course of Alzheimer’s disease. A multistate model allows us to specify at which points during the long disease process the intervention exerts its effects. Methods We used a nonhomogeneous Markov multistate model for the progression of Alzheimer’s disease through preclinical disease states defined by biomarkers, mild cognitive impairment and Alzheimer’s disease dementia. We used transition probabilities based on several published cohort studies. Sample size methods were developed that account for factors including the initial preclinical disease state of trial participants, the primary endpoint, age-dependent transition and mortality rates and specifications of which transition rates are the targets of the intervention. Results We find that Alzheimer’s disease prevention trials with a clinical primary endpoint of mild cognitive impairment or Alzheimer’s disease dementia will require sample sizes of the order many thousands of individuals with at least 5 years of follow-up, which is larger than most Alzheimer’s disease therapeutic trials conducted to date. The reasons for the large trial sizes include the long and variable preclinical period that spans decades, high rates of attrition among elderly populations due to mortality and losses to follow-up and potential selection effects, whereby healthier subjects enroll in prevention trials. A web application is available to perform sample size calculations using the methods reported here. Conclusion Sample sizes based on multistate models can account for the points in the disease process when interventions exert their effects and may lead to more accurate sample size determinations. We will need innovative strategies to help design Alzheimer’s disease prevention trials with feasible sample size requirements and durations of follow-up.

2021 ◽  
pp. 106425
Author(s):  
Sophie A. Bell ◽  
Hannah R. Cohen ◽  
Seonjoo Lee ◽  
Hyun Kim ◽  
Adam Ciarleglio ◽  
...  

2020 ◽  
Author(s):  
Miles D. Witham ◽  
James Wason ◽  
Richard M Dodds ◽  
Avan A Sayer

Abstract Introduction Frailty is the loss of ability to withstand a physiological stressor, and is associated with multiple adverse outcomes in older people. Trials to prevent or ameliorate frailty are in their infancy. A range of different outcome measures have been proposed, but current measures require either large sample sizes, long follow-up, or do not directly measure the construct of frailty. Methods We propose a composite outcome for frailty prevention trials, comprising progression to the frail state, death, or being too unwell to continue in a trial. To determine likely event rates, we used data from the English Longitudinal Study for Ageing, collected 4 years apart. We calculated transition rates between non-frail, prefrail, frail or loss to follow up due to death or illness. We used Markov state transition models to interpolate one- and two-year transition rates, and performed sample size calculations for a range of differences in transition rates using simple and composite outcomes. Results The frailty category was calculable for 4650 individuals at baseline (2226 non-frail, 1907 prefrail, 517 frail); at follow up, 1282 were non-frail, 1108 were prefrail, 318 were frail and 1936 had dropped out or were unable to complete all tests for frailty. Transition probabilities for those prefrail at baseline, measured at wave 4 were respectively 0.176, 0.286, 0.096 and 0.442 to non-frail, prefrail, frail and dead/dropped out. Interpolated transition probabilities were 0.159, 0.494, 0.113 and 0.234 at two years, and 0.108, 0.688, 0.087 and 0.117 at one year. Required sample sizes for a two-year outcome were between 1000 and 7200 for transition from prefrailty to frailty alone, 250 to 1600 for transition to the composite measure, and 75 to 350 using the composite measure with an ordinal logistic regression approach. Conclusion Use of a composite outcome for frailty trials offers reduced sample sizes and could ameliorate the effect of high loss to follow up inherent in such trials due to death and illness.


2019 ◽  
Author(s):  
Miles D. Witham ◽  
James Wason ◽  
Richard M Dodds ◽  
Avan A Sayer

Abstract Introduction Frailty is the loss of ability to withstand a physiological stressor, and is associated with multiple adverse outcomes in older people. Trials to prevent or ameliorate frailty are in their infancy. A range of different outcome measures have been proposed, but current measures require either large sample sizes, long follow-up, or do not directly measure the construct of frailty. Methods We propose a composite outcome for frailty prevention trials, comprising progression to the frail state, death, or being too unwell to continue in a trial. To determine likely event rates, we used data from the English Longitudinal Study for Ageing, collected 4 years apart. We calculated transition rates between non-frail, prefrail, frail or loss to follow up due to death or illness. We used Markov state transition models to interpolate one- and two-year transition rates, and performed sample size calculations for a range of differences in transition rates using simple and composite outcomes. Results The frailty category was calculable for 4650 individuals at baseline (2226 non-frail, 1907 prefrail, 517 frail); at follow up, 1282 were non-frail, 1108 were prefrail, 318 were frail and 1936 had dropped out or were unable to complete all tests for frailty. Transition probabilities for those prefrail at baseline, measured at wave 4 were respectively 0.176, 0.286, 0.096 and 0.442 to non-frail, prefrail, frail and dead/dropped out. Interpolated transition probabilities were 0.159, 0.494, 0.113 and 0.234 at two years, and 0.108, 0.688, 0.087 and 0.117 at one year. Required sample sizes for a two-year outcome were between 1000 and 7200 for transition from prefrailty to frailty alone, 250 to 1600 for transition to the composite measure, and 75 to 350 using the composite measure with an ordinal logistic regression approach. Conclusion Use of a composite outcome for frailty trials offers reduced sample sizes and could ameliorate the effect of high loss to follow up inherent in such trials due to death and illness.


2020 ◽  
Author(s):  
Rosalyn Hithersay ◽  
R. Asaad Baksh ◽  
Carla M. Startin ◽  
Peter Wijeratne ◽  
Sarah Hamburg ◽  
...  

2003 ◽  
pp. 129-140
Author(s):  
Michael Grundman ◽  
Hyun T. Kim ◽  
David Salmon ◽  
Martha Storandt ◽  
Glenn Smith ◽  
...  

Author(s):  
Diane M. Jacobs ◽  
M. Colin Ard ◽  
David P. Salmon ◽  
Douglas R. Galasko ◽  
Mark W. Bondi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document