Anatomic study of the intercostal nerve transfer to the suprascapular nerve and a case report

2013 ◽  
Vol 39 (2) ◽  
pp. 194-198 ◽  
Author(s):  
S. Hu ◽  
B. Chu ◽  
J. Song ◽  
L. Chen

The purpose of this study was to investigate the anatomical basis of intercostal nerve transfer to the suprascapular nerve and provide a case report. Thoracic walls of 30 embalmed human cadavers were used to investigate the anatomical feasibility for neurotization of the suprascapular nerve with intercostal nerves in brachial plexus root avulsions. We found that the 3rd and 4th intercostal nerves could be transferred to the suprascapular nerve without a nerve graft. Based on the anatomical study, the 3rd and 4th intercostal nerves were transferred to the suprascapular nerve via the deltopectoral approach in a 42-year-old man who had had C5-7 root avulsions and partial injury of C8, T1 of the right brachial plexus. Thirty-two months postoperatively, the patient gained 30° of shoulder abduction and 45° of external rotation. This procedure provided us with a reliable and convenient method for shoulder function reconstruction after brachial plexus root avulsion accompanied with spinal accessory nerve injury. It can also be used when the accessory nerve is intact but needs to be preserved for better shoulder stability or possible future trapezius transfer.

Neurosurgery ◽  
2011 ◽  
Vol 68 (2) ◽  
pp. E567-E570 ◽  
Author(s):  
Jayme Augusto Bertelli ◽  
Marcos Flávio Ghizoni

Abstract BACKGROUND AND IMPORTANCE: To report on the successful use of a platysma motor nerve transfer to the accessory nerve in a patient with concomitant trapezius and brachial plexus palsy. CLINICAL PRESENTATION: A 20-year-old man presented with total avulsion of the right brachial plexus combined with palsies of the accessory and phrenic nerve. The patient was operated on 4 months after his injury. The accessory nerve was repaired via direct transfer of the platysma motor branch. The contralateral C7 root was connected to the musculocutaneous nerve, and the hemihypoglossal nerve was grafted to the suprascapular nerve. Two intercostal nerves were attached to the triceps long head motor branch. CONCLUSION: Within 20 months of surgery, the patient regained full reinnervation of the upper trapezius muscle. Elbow flexion scored M3+, and 30° active shoulder abduction was observed. Triceps reinnervation was poor. Platysma motor branch transfer to the accessory nerve is a viable alternative to reinnervate the trapezius muscle.


2017 ◽  
Vol 33 (08) ◽  
pp. 592-595
Author(s):  
Marc Seifman ◽  
Scott Ferris

Background Optimal dynamic reconstruction of shoulder function requires a functional suprascapular nerve (SSN). Nerve transfer of the distal spinal accessory nerve (dSAN) to the SSN will in many cases restore very good supraspinatus and infraspinatus function. One potential cause of failure of this nerve transfer is an unrecognized more distal injury of the SSN. An anterior approach to this transfer does not allow for visualization of the nerve at the scapular notch which is a disadvantage when compared with a posterior approach to the SSN. Methods All patients of the senior author (S.F.) with traumatic brachial plexus injuries undergoing spinal accessory nerve to SSN transfer via the posterior approach were analyzed. Results Of the 58 patients, 11 (19.0%) demonstrated abnormal findings at the notch. In two of these 11 patients (18.2%), reconstruction was abandoned due to severe injury of the nerve. There was a higher rate of clavicular fractures in patients with SSN injuries at the notch, compared with no SSN injury at the notch (63.6 vs. 12.8%). Conclusion The dSAN to SSN transfer is a reliable reconstruction for restoration of shoulder external rotation and abduction. There is a high proportion of injuries to the nerve at the notch, which can be best appreciated from a posterior approach. The authors, therefore, advocate a posterior approach for this nerve transfer.


2008 ◽  
Vol 05 (02) ◽  
pp. 95-104 ◽  
Author(s):  
PS Bhandari ◽  
LP Sadhotra ◽  
P Bhargava ◽  
AS Bath ◽  
MK Mukherjee ◽  
...  

AbstractIn irreparable C5, C6 spinal nerve and upper truncal injuries the proximal root stumps are not available for grafting, hence repair is based on nerve transfer or neurotization. Between Feb 2004 and May 2006, 23 patients with irreparable C5, C6 or upper truncal injuries of the Brachial Plexus underwent multiple nerve transfers to restore the shoulder and elbow functions. Most of them (16 patients) sustained injury following motor cycle accidents. The average denervation period was 5.3 months. Shoulder function was restored by transfer of distal part of spinal accessory nerve to suprascapular nerve, and transfer of radial nerve branch to long head of triceps to the anterior branch of axillary nerve. Elbow function was restored by transfers of ulnar and median nerve fascicles to the biceps and brachialis motor branches of musculocutaneous nerve. All patients recovered shoulder abduction and external rotation; 7 scored M4 and 16 scored M3. Range of abduction averaged 1230(range, 800-1700). Full elbow flexion was restored in all 23 patients; 15 scored M4 and 8 scored M3. Patients with excellent results could lift 5 kgs of weight. Selective nerve transfers close to the target muscle provide an early and good return of functions. There is negligible morbidity in donor nerves. These intraplexal transfers are suitable in all cases of upper brachial plexus injuries.


2017 ◽  
Vol 3 ◽  
pp. 2513826X1775111 ◽  
Author(s):  
Haley Augustine ◽  
Matthew Choi ◽  
James Bain

Background: Obstetrical brachial plexus injury involving the suprascapular nerve is conventionally treated using an accessory nerve transfer or grafting. In circumstances where the accessory nerve is unsuitable, transfer of nerves with redundant function may be an alternate method of restoring function. Methods: This case describes the surgical technique of restoring shoulder function by reinnervating the musculature of the suprascapular nerve with a dorsal scapular nerve transfer in a patient with an obstetrical brachial plexus injury. Results: At 15 months post-operatively, the patient shoulder movement improved from zero muscle contraction to full range of motion against gravity measured by the active movement scale. His composite mallet score was 23 out of 25, with perfect scores in abduction and external rotation. Secondary surgery was not required. Conclusions: This case demonstrates a novel alternative to suprascapular nerve reinnervation in circumstances where the accessory nerve is unavailable, damaged, or otherwise suboptimal. Successful results were achieved, thus warranting consideration in clinical practice as well as further exploration and study.


2016 ◽  
Vol 24 (6) ◽  
pp. 990-995 ◽  
Author(s):  
Jayme Augusto Bertelli ◽  
Marcos Flávio Ghizoni

OBJECTIVE Transfer of the spinal accessory nerve to the suprascapular nerve is a common procedure, performed to reestablish shoulder motion in patients with total brachial plexus palsy. However, the results of this procedure remain largely unknown. METHODS Over an 11-year period (2002–2012), 257 patients with total brachial plexus palsy were operated upon in the authors' department by a single surgeon and had the spinal accessory nerve transferred to the suprascapular nerve. Among these, 110 had adequate follow-up and were included in this study. Their average age was 26 years (SD 8.4 years), and the mean interval between their injury and surgery was 5.2 months (SD 2.4 months). Prior to 2005, the suprascapular and spinal accessory nerves were dissected through a classic supraclavicular L-shape incision (n = 29). Afterward (n = 81), the spinal accessory and suprascapular nerves were dissected via an oblique incision, extending from the point at which the plexus crossed the clavicle to the anterior border of the trapezius muscle. In 17 of these patients, because of clavicle fractures or dislocation, scapular fractures or retroclavicular scarring, the incision was extended by detaching the trapezius from the clavicle to expose the suprascapular nerve at the suprascapular fossa. In all patients, the brachial plexus was explored and elbow flexion reconstructed by root grafting (n = 95), root grafting and phrenic nerve transfer (n = 6), phrenic nerve transfer (n = 1), or third, fourth, and fifth intercostal nerve transfer. Postoperatively, patients were followed for an average of 40 months (SD 13.7 months). RESULTS Failed recovery, meaning less than 30° abduction, was observed in 10 (9%) of the 110 patients. The failure rate was 25% between 2002 and 2004, but dropped to 5% after the staged/extended approach was introduced. The mean overall range of abduction recovery was 58.5° (SD 26°). Comparing before and after distal suprascapular nerve exploration (2005–2012), the range of abduction recovery was 45° (SD 25.1°) versus 62° (SD 25.3°), respectively (p = 0.002). In patients who recovered at least 30° of abduction, recovery of elbow flexion to at least an M3 level of strength increased the range of abduction by an average of 13° (p = 0.01). Before the extended approach, 2 (7%) of 29 patients recovered active external rotation of 20° and 120°. With the staged/extended approach, 32 (40%) of 81 recovered some degree of active external rotation. In these patients, the average range of motion measured from the thorax was 87° (SD 40.6°). CONCLUSIONS In total palsies of the brachial plexus, using the spinal accessory nerve for transfer to the suprascapular nerve is reliable and provides some recovery of abduction for a large majority of patients. In a few patients, a more extensive approach to access the suprascapular nerve, including, if necessary, dissection in the suprascapular fossa, may enhance outcomes.


Neurosurgery ◽  
2005 ◽  
Vol 57 (3) ◽  
pp. 530-537 ◽  
Author(s):  
Willem Pondaag ◽  
Ralph de Boer ◽  
Marie S. van Wijlen-Hempel ◽  
Sonja M. Hofstede-Buitenhuis ◽  
Martijn J.A. Malessy

ABSTRACT OBJECTIVE: Obstetric brachial plexus lesions may cause lifelong limitations of upper limb function. Nerve repair is widely advocated in infants who do not show spontaneous recovery. Typically, the suprascapular nerve (SSN) is involved in the lesion. Neurotization of the SSN routinely is performed, aiming at reinnervation of the infraspinatus muscle to restore external rotation. The results after SSN neurotization have not, as yet, been studied in detail; therefore, this study was undertaken. Of special interest was the comparison of two commonly applied SSN neurotization procedures: nerve grafting from C5 versus nerve transfer of the accessory nerve. METHODS: Infants with obstetric brachial plexus lesions after nerve grafting of C5 to the SSN (n = 65) or nerve transfer of the accessory nerve to the SSN (n = 21) were selected for retrospective analysis after a mean follow-up period of 3 years. Outcome was expressed in degrees of true glenohumeral external rotation. This was defined as the angle between the position of the 90 degrees (actively or passively) flexed elbow resting against the abdomen and the position of the flexed elbow after external rotation with the upper arm held in adduction by the investigator. This movement can be executed only by infraspinatus muscle contraction. In addition, functional external rotation was evaluated by testing the ability to reach the mouth and the back of the head. RESULTS: Only 17 (20%) of the 86 patients reached more than 20 degrees of external rotation, whereas 35 (41%) were unable to perform true external rotation. There was no statistically significant difference between nerve grafting from C5 and extraplexal nerve transfer using the accessory nerve. Functional scores showed that 88% can reach the mouth and that 75% can reach the head. CONCLUSION: The restoration of a fair range of true glenohumeral external rotation after neurotization of the SSN in infants with obstetric brachial plexus lesions, whether by grafting from C5 or by nerve transfer of the accessory nerve, is disappointingly low. However, it seems that compensatory techniques contribute to effectuate a considerable range of movement.


Hand ◽  
2021 ◽  
pp. 155894472110306
Author(s):  
Kevin J. Nickel ◽  
Alexander Morzycki ◽  
Ralph Hsiao ◽  
Michael J. Morhart ◽  
Jaret L. Olson

Background Restoration of shoulder function in obstetrical brachial plexus injury is paramount. There remains debate as to the optimal method of upper trunk reconstruction. The purpose of this study was to test the hypothesis that spinal accessory nerve to suprascapular nerve transfer leads to improved shoulder external rotation relative to sural nerve grafting. Methods A systematic review of Medline, EMBASE, EBSCO CINAHL, SCOPUS, Cochrane Library, and TRIP Pro from inception was conducted. Our primary outcome was shoulder external rotation. Results Four studies were included. Nerve transfer was associated with greater shoulder external rotation relative to nerve grafting (mean difference: 0.82 AMS 95% confidence interval [CI]: 0.27-1.36, P < .005). Patients undergoing nerve grafting were more likely to undergo a secondary shoulder stabilizing procedure (odds ratio [OR]: 1.27, 95% CI: 0.8376-1.9268). Conclusion In obstetrical brachial plexus injury, nerve transfer is associated with improved shoulder external rotation and a lower rate of secondary shoulder surgery. Level of Evidence Level III; Therapeutic


2006 ◽  
Vol 58 (suppl_4) ◽  
pp. ONS-366-ONS-370 ◽  
Author(s):  
Jayme Augusto Bertelli ◽  
Marcos Flavio Ghizoni

Abstract Objective: The accessory nerve is frequently used as a donor for nerve transfer in brachial plexus injuries. In currently available techniques, nerve identification and dissection is difficult because fat tissue, lymphatic vessels, and blood vessels surround the nerve. We propose a technique for location and dissection of the accessory nerve between the deep cervical fascia and the trapezius muscle. Methods: Twenty-eight patients with brachial plexus palsy had the accessory nerve surgically transplanted to the suprascapular nerve. To harvest the accessory nerve, the anterior border of the trapezius muscle was located 2 to 3 cm above the clavicle. The fascia over the trapezius muscle was incised and detached from the anterior surface of the muscle, initially, close to the clavicle, then proximally. The trapezius muscle was detached from the clavicle for 3 to 4 cm. The accessory nerve and its branches entering the trapezius muscle were identified. The accessory nerve was sectioned as distally as possible. To allow for accessory nerve mobilization, one or two proximal branches to the trapezius muscle were cut. The most proximal branch was always identified and preserved. A tunnel was created in the detached fascia, and the accessory nerve was passed through this tunnel to the brachial plexus. Results: In all of the cases, the accessory nerve was easily identified under direct vision, without the use of electric stimulation. Direct coaptation of the accessory nerve with the suprascapular nerve was possible in all patients. Conclusion: The technique proposed here for harvesting the accessory nerve for transfer made its identification and dissection easier.


Sign in / Sign up

Export Citation Format

Share Document