scholarly journals Voxelwise computed diffusion-weighted imaging for the detection of cytotoxic oedema in brain imaging: a pilot study

2018 ◽  
Vol 31 (5) ◽  
pp. 518-522
Author(s):  
Ferdinand Seith ◽  
Holger Schmidt ◽  
Konstantin Nikolaou ◽  
Ulrike Ernemann ◽  
Georg Bier

Aim To evaluate voxelwise computed diffusion-weighted imaging (vcDWI) for the detection of cytotoxic oedema in brain imaging and to quantify the benefit of lesion contrast in comparison to standard b = 1000 s/mm2 by the example of acute ischaemic stroke. Materials and methods A retrospective evaluation of 66 patients (63 ± 15.9 years) suspected for acute ischaemic stroke who received diffusion-weighted magnetic resonance imaging and fluid-attenuated inversion recovery sequence. A neuroradiologist evaluated all examinations for acute ischaemic stroke based on diffusion-weighted imaging, the apparent diffusion coefficient and fluid-attenuated inversion recovery (reference standard) and 6 weeks later the vcDWI in a randomised manner. Time of analysis was noted. Signal intensities were acquired in lesions, in healthy tissue as well as in the cerebrospinal fluid. Contrast ratios and coefficients of variation were computed. Results A total of 218 lesions was found in 46/66 patients. vcDWI identified all patients and lesions correctly. The median evaluation time was 36 seconds (4–126 s) for the vcDWI and 44 seconds (9–186 s; P < 0.001) for the diffusion-weighted imaging/apparent diffusion coefficient reading. The contrast ratio in vcDWI (mean value 2.57, range 1.73–4.11) was higher than in b = 1000 s/mm2 (2.33, 0.83–3.85, P = 0.03) and the apparent diffusion coefficient map (1.83, 1.00–3.00, P < 0.001), respectively. Coefficients of variation in lesions and tissue did not differ significantly between vcDWI and b = 1000 s/mm2 ( P = 0.81/ P = 0.26). The signal intensity of cerebrospinal fluid was lower in vcDWI than in b = 1000 mm2/s (0.08 and 34.8, P < 0.001). Conclusion It could be shown that vcDWI has the potential to accelerate the detection of diffusion-restricted lesions in neuroimaging by improving the contrast ratios and reducing the T2 shine-through effect in comparison to standard diffusion-weighted imaging in brain imaging.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jan Novak ◽  
Niloufar Zarinabad ◽  
Heather Rose ◽  
Theodoros Arvanitis ◽  
Lesley MacPherson ◽  
...  

AbstractTo determine if apparent diffusion coefficients (ADC) can discriminate between posterior fossa brain tumours on a multicentre basis. A total of 124 paediatric patients with posterior fossa tumours (including 55 Medulloblastomas, 36 Pilocytic Astrocytomas and 26 Ependymomas) were scanned using diffusion weighted imaging across 12 different hospitals using a total of 18 different scanners. Apparent diffusion coefficient maps were produced and histogram data was extracted from tumour regions of interest. Total histograms and histogram metrics (mean, variance, skew, kurtosis and 10th, 20th and 50th quantiles) were used as data input for classifiers with accuracy determined by tenfold cross validation. Mean ADC values from the tumour regions of interest differed between tumour types, (ANOVA P < 0.001). A cut off value for mean ADC between Ependymomas and Medulloblastomas was found to be of 0.984 × 10−3 mm2 s−1 with sensitivity 80.8% and specificity 80.0%. Overall classification for the ADC histogram metrics were 85% using Naïve Bayes and 84% for Random Forest classifiers. The most commonly occurring posterior fossa paediatric brain tumours can be classified using Apparent Diffusion Coefficient histogram values to a high accuracy on a multicentre basis.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0247301
Author(s):  
Jelena Djokić Kovač ◽  
Marko Daković ◽  
Aleksandra Janković ◽  
Milica Mitrović ◽  
Vladimir Dugalić ◽  
...  

Background The utility of intravoxel incoherent motion (IVIM) related parameters in differentiation of hypovascular liver lesions is still unknown. Purpose The purpose of this study was to evaluate the value of IVIM related parameters in comparison to apparent diffusion coefficient (ADC) for differentiation among intrahepatic mass-forming cholangiocarcinoma (IMC), and hypovascular liver metastases (HLM). Methods Seventy-four prospectively enrolled patients (21 IMC, and 53 HLM) underwent 1.5T magnetic resonance examination with IVIM diffusion-weighted imaging using seven b values (0–800 s/mm2). Two independent readers performed quantitative analysis of IVIM-related parameters and ADC. Interobserver reliability was tested using a intraclass correlation coefficient. ADC, true diffusion coefficient (D), perfusion-related diffusion coefficient (D*), and perfusion fraction (ƒ) were compared among the lesions using Kruskal-Wallis H test. The diagnostic accuracy of each parameter was assessed by receiver operating characteristic (ROC) curve analysis. Results The interobserver agreement was good for ADC (0.802), and excellent for D, D*, and ƒ (0.911, 0.927, and 0.942, respectively). ADC, and D values were significantly different among IMC and HLM (both p < 0.05), while there was no significant difference among these lesions for ƒ and D* (p = 0.101, and p = 0.612, respectively). ROC analysis showed higher diagnostic performance of D in comparison to ADC (AUC = 0.879 vs 0.821). Conclusion IVIM-derived parameters in particular D, in addition to ADC, could help in differentiation between most common hypovascular malignant liver lesions, intrahepatic mass—forming cholangiocarcinoma and hypovascular liver metastases.


Sign in / Sign up

Export Citation Format

Share Document