scholarly journals LOCALIZATION OF ACETYLCHOLINESTERASE IN THE TELEOST RETINA

1972 ◽  
Vol 20 (2) ◽  
pp. 130-136 ◽  
Author(s):  
CHARLES W. NICHOLS ◽  
JAMES HEWITT ◽  
ALAN M. LATIES

Acetylcholinesterase is the sole cholinesterase enzyme identifiable histochemically in the teleost retina. Acetylcholinesterase is present in both amacrine and ganglion cells in the retinas of all three species of fish studied. No sign of acetylcholinesterase activity was found in ganglion cell axons either in the nerve fiber layer of the retina or in the optic nerve. Evidence is presented for the presence of acetylcholinesterase activity in additional cell types within the nuclear layer. The distribution of acetylcholinesterase-containing cells in teleost retina is compared to that in other species.

In the model of experimentally induced ischemia- reperfusion injury, retinal ganglion cells (RGC) expressing the gene AP-1 result apoptosis. The inflammation mediators, such as TNF-α, IL-1β, etc. lead RGC to apoptosis, that may lead the thinning of the retinal ganglion cell layer (RGCL) followed by the optic nerve fiber layer (RNFL) thinning. In his study we observed retinal ganglion cell and optic nerve fiber layer thinning in patients with various uveitis, that the pathological features appear obliterative vasculitis, using the optical coherence tomography (OCT) imaging analyses. Subjects were 182 eyes of 91 uveitis patients without glaucoma. Comparison were patients with normal tension glaucoma (NTG). Image analyses were conducted with 3D OCT-2000. As a result average RGCL thickness values in the patients with uveitis were significantly(p<0.01) thinner than those in healthies. Cycle scan findings of RNFL around the optic disc in the patients with uveitis showed significant thinning especially at nasal side. The retinal ganglion cell layer thinning followed by the retinal nerve fiber thinning in the patients with various uveitis was observed, and the thinning was similar to that in patients with glaucoma. The observation of RGCL and RNFL thickness may be useful for the diagnosis and the follow-up of uveitis.


2021 ◽  
Vol 22 (4) ◽  
pp. 1724
Author(s):  
Tsunehiko Ikeda ◽  
Kimitoshi Nakamura ◽  
Takaki Sato ◽  
Teruyo Kida ◽  
Hidehiro Oku

Dissociated optic nerve fiber layer (DONFL) appearance is characterized by dimpling of the fundus when observed after vitrectomy with the internal limiting membrane (ILM) peeling in macular diseases. However, the cause of DONFL remains largely unknown. Optical coherence tomography (OCT) findings have indicated that the nerve fiber layer (NFL) and ganglion cells are likely to have been damaged in patients with DONFL appearance. Since DONFL appearance occurs at a certain postoperative period, it is unlikely to be retinal damage directly caused by ILM peeling because apoptosis occurs at a certain period after tissue damage and/or injury. However, it may be due to ILM peeling-induced apoptosis in the retinal tissue. Anoikis is a type of apoptosis that occurs in anchorage-dependent cells upon detachment of those cells from the surrounding extracellular matrix (i.e., the loss of cell anchorage). The anoikis-related proteins βA3/A1 crystallin and E-cadherin are reportedly expressed in retinal ganglion cells. Thus, we theorize that one possible cause of DONFL appearance is ILM peeling-induced anoikis in retinal ganglion cells.


2018 ◽  
Vol 27 (4) ◽  
pp. 350-356 ◽  
Author(s):  
Sunee Chansangpetch ◽  
Guofu Huang ◽  
Paul Coh ◽  
Catherine Oldenburg ◽  
Behzad Amoozgar ◽  
...  

Ophthalmology ◽  
2012 ◽  
Vol 119 (6) ◽  
pp. 1151-1158 ◽  
Author(s):  
Jean-Claude Mwanza ◽  
Mary K. Durbin ◽  
Donald L. Budenz ◽  
Fouad E. Sayyad ◽  
Robert T. Chang ◽  
...  

2018 ◽  
Author(s):  
Timothy Esler ◽  
Robert R. Kerr ◽  
Bahman Tahayori ◽  
David B. Grayden ◽  
Hamish Meffin ◽  
...  

ABSTRACTObjective. Currently, a challenge in electrical stimulation of the retina is to excite only the cells lying directly under the electrode in the ganglion cell layer, while avoiding excitation of the axons that pass over the surface of the retina in the nerve fiber layer. Since these passing fibers may originate from distant regions of the ganglion cell layer. Stimulation of both target retinal ganglion cells and overlying axons results in irregular visual percepts, significantly limiting perceptual efficacy. This research explores how differences in fiber orientation between the nerve fiber layer and ganglion cell layer leads to differences in the activation of the axon initial segment and axons of passage. Approach. Axons of passage of retinal ganglion cells in the nerve fiber layer are characterized by a narrow distribution of fiber orientations, causing highly anisotropic spread of applied current. In contrast, proximal axons in the ganglion cell layer have a wider distribution of orientations. A four-layer computational model of epiretinal extracellular stimulation that captures the effect of neurite orientation in anisotropic tissue has been developed using a modified version of the standard volume conductor model, known as the cellular composite model. Simulations are conducted to investigate the interaction of neural tissue orientation, stimulating electrode configuration, and stimulation pulse duration and amplitude. Main results. The dependence of fiber activation on the anisotropic nature of the nerve fiber layer is first established. Via a comprehensive search of key parameters, our model shows that the simultaneous stimulation with multiple electrodes aligned with the nerve fiber layer can be used to achieve selective activation of axon initial segments rather than passing fibers. This result can be achieved with only a slight increase in total stimulus current and modest increases in the spread of activation in the ganglion cell layer, and is shown to extend to the general case of arbitrary electrode array positioning and arbitrary target neural volume. Significance. These results elucidate a strategy for more targeted stimulation of retinal ganglion cells with experimentally-relevant multi-electrode geometries and readily achievable stimulation requirements.


2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
Seiji T. Takagi ◽  
Yoshiyuki Kita ◽  
Asuka Takeyama ◽  
Goji Tomita

Purpose. To evaluate the relationship between the macular ganglion cell complex (mGCC) thickness, which is the sum of the retinal nerve fiber, ganglion cell, and inner plexiform layers, measured with a spectral-domain optical coherence tomograph and the optic nerve head topography measured with a confocal scanning laser ophthalmoscope in glaucomatous eyes with visual field defects localized predominantly to either hemifield.Materials and Methods. The correlation between the mGCC thickness in hemispheres corresponding to hemifields with and without defects (damaged and intact hemispheres, respectively) and the optic nerve head topography corresponding to the respective hemispheres was evaluated in 18 glaucomatous eyes.Results. The mGCC thickness was significantly correlated with the rim volume, mean retinal nerve fiber layer thickness, and cross-sectional area of the retinal nerve fiber layer in both the intact and the damaged hemispheres(P<.05).Discussion. For detecting very early glaucomatous damage of the optic nerve, changes in the thicknesses of the inner retina in the macular area and peripapillary RNFL as well as rim volume changes in the optic nerve head are target parameters that should be carefully monitored.


1997 ◽  
Vol 14 (3) ◽  
pp. 433-447 ◽  
Author(s):  
T. Fitzgibbon

AbstractThe organization of the primate nerve fiber layer and optic nerve head with respect to the positioning of central and peripheral axons remains controversial. Data were obtained from 32 human fetal retinae aged between 15 and 21 weeks of gestation. Crystals of the carbocyanine dyes, DiI or DiA, and fluorescence microscopy were used to identify axonal populations from peripheral retinal ganglion cells. Peripheral ganglion cell axons were scattered throughout the vitreal-scleral depth of the nerve fiber layer. Such a scattered distribution was maintained as the fibers passed through the optic nerve head and along the optic nerve. There was a rough topographic representation within the optic nerve head according to retinal quadrant such that both peripheral and central fibers were mixed within a wedge extending from the periphery to the center of the nerve. There was no indication that the fibers were reorganized in any way as they passed through the optic disc and into the nerve. The present results suggest that any degree of order present within the fiber layer and optic nerve is not an active process but a passive consequence of combining the fascicles of the retinal nerve fiber layer. Optic axons are not instructed to establish a retinotopic order and the effect of guidance cues in reordering fibers, particularly evident prechiasmatically and postchiasmatically, does not appear to be present within the nerve fiber layer or optic nerve head in humans.


Sign in / Sign up

Export Citation Format

Share Document