scholarly journals Apocynin promotes neural function recovery and suppresses neuronal apoptosis by inhibiting Tlr4/NF-κB signaling pathway in a rat model of cerebral infarction

2018 ◽  
Vol 32 ◽  
pp. 205873841881770
Author(s):  
Lemen Pan ◽  
Shuxia Qian

Occlusion of arteries in the brain is a common cause of cerebral infarction which induces inflammatory response and oxidative stress resulting in neuronal apoptosis and disruption of neurological function. The present study investigated the protective roles of an nicotinamide adenine dinucleotide phosphate oxidase inhibitor, apocynin, against cerebral infarction. Rat went through a surgery of middle cerebral artery occlusion and a subset of rats was treated with apocynin by intraperitoneal injection. The volume of cerebral infarction and water content were measured. Neuronal apoptosis, inflammatory response, and oxidative stress were assessed following middle cerebral artery occlusion and apocynin treatment. We found that apocynin significantly improved neurological function, increased forelimb placement test scores, and suppressed balance beam walk latency in rats with cerebral infarction. Histological and biochemistry analysis revealed that apocynin lead to a significant reduction in the volume of cerebral infarction as well as cerebral water content, suppressed neuronal apoptosis, oxidative stress, and inflammatory response induced by middle cerebral artery occlusion. Finally, we found that apocynin suppressed Tlr4/nuclear factor-k-gene binding signaling pathway that was upregulated in rats with cerebral infarction. Our results indicate that apocynin may represent a potent therapeutic strategy in alleviating neurological dysfunctions in patients with cerebral infarction.

ASN NEURO ◽  
2020 ◽  
Vol 12 ◽  
pp. 175909142096055 ◽  
Author(s):  
Dan Cui ◽  
Shuwei Jia ◽  
Jiawei Yu ◽  
Dongyang Li ◽  
Tong Li ◽  
...  

In ischemic stroke, vasopressin hypersecretion is a critical factor of cerebral swelling and brain injury. To clarify neural mechanisms underlying ischemic stroke-evoked vasopressin hypersecretion, we observed the effect of unilateral permanent middle cerebral artery occlusion (MCAO) in rats on astrocytic plasticity and vasopressin neuronal activity in the supraoptic nucleus (SON) as well as their associated cerebral injuries. MCAO for 8 hr caused cerebral infarction in the MCAO side where water contents also increased. Immunohistochemical examination revealed that the percentage of phosphorylated extracellular signal-regulated protein kinase 1/2 (pERK1/2)-positive vasopressin neurons in the SON of MCAO side was significantly higher than that in non-MCAO side and in sham group. In the cortex, pERK1/2 and aquaporin 4 expressions increased significantly in the infarction area, while glial fibrillary acidic protein (GFAP) reduced significantly compared with the noninfarction side in brain cortex. Microinjection of N-(1,3,4-Thiadiazolyl)nicotinamide-020 [TGN-020, a specific blocker of aquaporin 4] into the SON blocked MCAO-evoked increases in pERK1/2 in the SON as well as the reduction of GFAP and the increase in pERK1/2 and aquaporin 4 in the infarction area of the cortex. Finally, oxygen and glucose deprivation reduced GFAP expression and the colocalization and molecular association of GFAP with aquaporin 4 in the SON in brain slices. These effects were blocked by TGN-020 and/or phloretin, a blocker of astrocytic volume-regulated anion channels. These findings indicate that blocking aquaporin 4 in the SON may reduce the activation of vasopressin neurons and brain injuries elicited by vasopressin during ischemic stroke.


Sign in / Sign up

Export Citation Format

Share Document