Evaluation of the Bond Strength of Different Pulp Capping Materials to Dental Adhesive Systems: An In Vitro Study

2021 ◽  
pp. 232020682199798
Author(s):  
Sema Yazici Akbiyik ◽  
Elif Pınar Bakir ◽  
S¸eyhmus Bakir

Aim: To evaluate the bond strengths of pulp capping materials (Dycal, ProRoot MTA, Biodentine, TheraCal LC, Calcimol LC, and ApaCal ART) and different adhesive systems (Gluma 2 Bond, Clearfil SE Protect, Gluma Self Etch, Clearfil S 3 Bond Plus, Gluma Bond Universal, Clearfil S 3 Bond Universal). Materials and Methods: Two hundred fifty-two acrylic blocks were prepared in which cylindrical cavities of 4 × 2 mm 3 were formed. Pulp capping materials were placed in the cavities. Different adhesive systems were applied to each pulp capping material group. After applying the composite resin, the shear bond strength (SBS) values of the specimens were determined in the Instron test device. Fracture types were evaluated using a stereomicroscope and a scanning electron microscope. Data were analyzed by Shapiro–Wilk’s and Kruskal–Wallis H test. Results: There is a statistically significant difference between pulp capping materials in terms of SBS values ( P < .05). Dycal’s SBS was found significantly lower than other materials, and the highest bond strength was observed in Calcimol LC material. Although there is no statistically significant difference ( P > .05) between the adhesive agent groups in terms of SBS, Gluma 2 Bond showed the highest bond strength value. Conclusion: In traditional pulp capping materials such as Dycal, MTA, and Biodentine, using a two-step self-etch adhesive system can result in higher bond strength values. In resin-based TheraCal LC,, ApaCal ART, and Calcimol LC materials, it may be recommended to use a two-step etch and rinse adhesive system.

Author(s):  
Sara Valizadeh ◽  
Aida Moradi ◽  
Mansooreh Mirazei ◽  
Hooman Amiri ◽  
Mohammad Javad Kharazifard

Objectives: The aim of this study was to compare the microshear bond strength (µSBS) of various adhesive systems to dentin. Materials and Methods: In this in vitro experimental study, 60 sound human third molars were divided into four groups. Dentin discs were prepared of middle-third dentin measuring 4 mm in diameter and 2 mm in thickness. Dentin surfaces were bonded with one of the four types of adhesives: (A) Single Bond (3M ESPE), Scotchbond Universal (3M ESPE) in etch and rinse (B) and self-etch (C) modes and (D) Clearfil SE Bond (Kuraray Noritake Dental). After the application of adhesive systems according to the manufacturers’ instructions, composite cylinders (Vit-l-escence) were bonded to dentin surfaces. The μSBS test was performed using a universal testing machine at a crosshead speed of 1 mm/min. Data were analyzed with one-way ANOVA and Tukey’s test (α=0.05). Results: The µSBS was the highest in self-etch Scotchbond Universal (15.8±6.08 MPa) followed by Clearfil SE Bond (15.24±4.6 MPa), etch and rinse Scotchbond Universal (11.68±4.07MPa) and Single Bond (11.24±3.74 MPa). A significant difference was only found between Single Bond and etch and rinse Scotchbond Universal groups (P=0.04). Conclusion: Based on the results of this study, application of Scotchbond Universal in self-etch mode provides a reliable bond to dentin.


Author(s):  
Sara Valizadeh ◽  
Aida Moradi ◽  
Mansooreh Mirazei ◽  
Hooman Amiri ◽  
Mohammad Javad Kharazifard

Objectives: The aim of this study was to compare the microshear bond strength (µSBS) of various adhesive systems to dentin. Materials and Methods: In this in vitro experimental study, 60 sound human third molars were divided into four groups. Dentin discs were prepared of middle-third dentin measuring 4 mm in diameter and 2 mm in thickness. Dentin surfaces were bonded with one of the four types of adhesives: (A) Single Bond (3M ESPE), Scotchbond Universal (3M ESPE) in etch and rinse (B) and self-etch (C) modes and (D) Clearfil SE Bond (Kuraray Noritake Dental). After the application of adhesive systems according to the manufacturers’ instructions, composite cylinders (Vit-l-escence) were bonded to dentin surfaces. The μSBS test was performed using a universal testing machine at a crosshead speed of 1 mm/min. Data were analyzed with one-way ANOVA and Tukey’s test (α=0.05). Results: The µSBS was the highest in self-etch Scotchbond Universal (15.8±6.08 MPa) followed by Clearfil SE Bond (15.24±4.6 MPa), etch and rinse Scotchbond Universal (11.68±4.07MPa) and Single Bond (11.24±3.74 MPa). A significant difference was only found between Single Bond and etch and rinse Scotchbond Universal groups (P=0.04). Conclusion: Based on the results of this study, application of Scotchbond Universal in self-etch mode provides a reliable bond to dentin.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Cécile Bernard ◽  
Cyril Villat ◽  
Hazem Abouelleil ◽  
Marie-Paule Gustin ◽  
Brigitte Grosgogeat

The aim of this study was to assess the effect of radiotherapy on bond efficiency of two different adhesive systems using tensile bond strength test. Twenty extracted teeth after radiotherapy and twenty nonirradiated extracted teeth were used. The irradiation was appliedin vivoto a minimal dose of 50 Gy. The specimens of each group were randomly assigned to two subgroups to test two different adhesive systems. A three-step/etch-and-rinse adhesive system (Optibond FL) and a two-steps/self-etch adhesive system (Optibond XTR) were used. Composite buildups were performed with a nanohybrid composite (Herculite XTR). All specimens were submitted to thermocycling ageing (10000 cycles). The specimens were sectioned in 1 mm2sticks. Microtensile bond strength tests were measured. Nonparametric statistical analyses were performed due to nonnormality of data. Optibond XTR on irradiated and nonirradiated teeth did not show any significant differences. However, Optibond FL bond strength was more effective on nonirradiated teeth than on irradiated teeth. Within the limitations of anin vitrostudy, it can be concluded that radiotherapy had a significant detrimental effect on bond strength to human dentin. However, it seems that adhesive choice could be adapted to the substrata. According to the present study, the two-steps/self-etch (Optibond XTR) adhesive system tested could be more effective on irradiated dentin compared to three-steps/etch-and-rinse adhesive system (Optibond FL).


2013 ◽  
Vol 38 (1) ◽  
pp. 48-56 ◽  
Author(s):  
HA El-Deeb ◽  
HH Al Sherbiney ◽  
EH Mobarak

SUMMARY Objective: To evaluate the dentin bond strength durability of adhesives containing modified-monomer with/without-fluoride after storage in artificial saliva and under intrapulpal pressure simulation (IPPS). Materials and Methods: The occlusal enamel of 48 freshly extracted teeth was trimmed to expose midcoronal dentin. Roots were sectioned to expose the pulp chamber and to connect the specimens to the pulpal-pressure assembly. Specimens were assigned into four groups (n=12) according to adhesive system utilized: a two-step etch-and-rinse adhesive system (SB, Adper Single Bond 2, 3M ESPE), a two-step self-etch adhesive system (CSE, Clearfil SE Bond, Kuraray Medical Inc), and two single-step self-etch adhesives with the same modified monomer (bis-acrylamide)—one with fluoride (AOF, AdheSE One F, Ivoclar-Vivadent) and the other without (AO, AdheSE One, Ivoclar-Vivadent). Bonding was carried out while the specimens were subjected to 15-mm Hg IPPS. Resin composite (Valux Plus, 3M ESPE) buildups were made. After curing, specimens were aged in artificial saliva and under 20-mm Hg IPPS at 37°C in a specially constructed incubator either for 24 hours or six months prior to testing. Bonded specimens (n=6/group) were sectioned into sticks (n=24/group) with a cross section of 0.9 ± 0.01 mm2 and subjected to microtensile bond strength (μTBS) testing using a universal testing machine. Data were statistically analyzed using two-way analysis of variance (ANOVA) with repeated measures, one-way ANOVA tests, and a t-test (p&lt;0.05). Failure modes were determined using a scanning electron microscope. Results: The μTBS values of SB and CSE fell significantly after six-month storage in artificial saliva and under IPPS, yet these values remained significantly higher than those for the other two adhesives with modified monomers. There was no significant difference in the bond strength values between fluoride-containing and fluoride-free self-etch adhesive systems (AOF and AO) after 24 hours or six months. Modes of failure were mainly adhesive and mixed. Conclusions: Based on the results of this study, 1) Fluoride addition did not affect dentin bond durability; and 2) despite the fact that the single-step adhesive system with modified monomer showed stability, bond strengths associated with these systems remained lower than those of multistep adhesive systems.


2021 ◽  
Vol 24 (2) ◽  
Author(s):  
Fateme Vasei ◽  
Farahnaz Sharafeddin

Objective: To assess the shear bond strength (SBS) of resin composite to deep dentin, using 1 and 2.5% chitosan pretreatment as well as different adhesive systems. Material and Methods: 80 human maxillary molars were randomly divided to eight groups according to the type of adhesive system and dentin pretreatment (n = 10): I) two-step self-etch system (Clearfil SE bond); II) two-step etch-andrinse system (Adper single bond 2); III) 2.5% chitosan + Clearfil SE bond; IV) 2.5% chitosan +etch + Adper single bond 2; V) etch + 2.5% chitosan + Adper single bond 2; VI) 1% chitosan + Clearfil SE bond; VII) 1% chitosan + etch + Adper single bond 2; VIII) etch + 1% chitosan + Adper single bond 2 (chitosan solution (w/v): 2.5 g and 1 g of chitosan (Sigma Aldrich, USA) was dissolved in 100 ml of 1% acetic acid). Plastic molds were positioned on dentin and filled with composite (Z350, 3M ESPE, USA). SBS (MPa) was tested using a universal testing machine. ANOVA tests, Tukey’s test, and independent t test were used to analyze data (p < 0.05). Results: The highest SBS value among self-etch groups was observed with 1% chitosan (p = 0.001). In the etch-and-rinse group, the SBS of 1% chitosan was significantly lower than the other groups. Chitosan treatment following acid etching led to higher SBS in comparison to when chitosan was applied before etching, with the significant difference in 1% concentration (p = 0.030). A predominance of mix fractures was observed in dentin. Conclusion: Improved dentin bond strength can be achieved through immediate dentin pretreatment with 1% chitosan in self-etch adhesive systems. Chitosan Pretreatment may not be advantageous for etch-and-rinse adhesive systems. Keywords Adhesive system; Chitosan; Deep dentin; Shear strength.


2015 ◽  
Vol 3 (3) ◽  
pp. 688
Author(s):  
Jonas Almeida Rodrigues ◽  
Cristiane Meira Assunção ◽  
Rogério Nanini Macanhão ◽  
Leila Canarin Vieira ◽  
Angela Scarparo

AIM: The aim of this study was to evaluate whether different adhesive systems (etch-and-rinse or self-etch) render enamel-composite resin interface in primary teeth more susceptible to erosive challenge. MATERIAL AND METHODS: Thirty enamel specimens from caries-free primary incisors were selected and cavities were prepared for restoration. According to adhesive protocols, specimens were divided into groups: G1 (Adper Single Bond 2), G2 (Adper SE Plus), and G3 (35% phosphoric acid + Adper SE Plus). After restorative procedures, half of the surface of enamel and restorative material was protected with nail varnish, thus, only half of the sample was subjected to the erosive challenge (immersion in Coca-Cola®, 3 cycles of 5 minutes, for 5 days). Samples were analysed quantitatively through Knoop microhardness, the indentations were made on enamel-composite interface. Data were submitted to statistical analysis (Student’s t test, two-way ANOVA, p<0.05). RESULTS: It showed that different adhesive systems did not significantly affect the percentage of superficial microhardness change after an erosive challenge (p=0.387). However, although no significant difference was observed, G2 (self-etch system) showed the lowest percentage of superficial microhardness change. CONCLUSION: The use of different adhesive systems did not influence superficial microhardness of enamel-composite interface after an erosive challenge. The incomplete removal of the smear layer, though self-etch systems, suggests a greater ability to withstand the erosive challenge on the enamel-resin interface.


2017 ◽  
Vol 18 (1) ◽  
pp. 34-38
Author(s):  
Mojtaba Abdollahi ◽  
Masoumeh Ebrahimi ◽  
Alireza Sarraf Shirazi ◽  
Faraneh Abdolhoseinpour

ABSTRACT Introduction One of the possible mechanisms for the gradual destruction of bond strength in dentin-resin interface, could be due to the demineralized unstable collagen matrix. Use of protease inhibitors, such as tannic acid (TA) could prevent destruction of collagen fibers. The aim of this study was to compare the TA effect on bond strength of etch and rinse and self-etch adhesive systems in the dentin of primary teeth. Materials and methods This in vitro study was done on 40 extracted primary molar teeth. The teeth were sectioned in the mesiodistal direction, and enamel of buccal and lingual surfaces was removed. Samples were randomly divided into four groups: Single bond (SB) + TA, SB, Clearfil SE Bond (CSB) + TA, and CSB. Then, Z250 and Clearfil AP-X composites were cured on the surfaces of SB and CSB groups respectively. After that, all samples were divided into aging and non-aging groups. For 3 months, samples were placed under 1,000 thermal cycles in aging group. Subsequently, the shear bond strengths of all groups were measured by the International testing machine, and failure mode was evaluated by an optical stereomicroscope. Data were analyzed with paired t-test and independent t-test. Results Tannic acid induced a significant reduction in the immediate bond strength of adhesive SB. Meanwhile, TA had no significant effect on shear bond strength of the CSB system. Conclusion Based on our findings, use of TA is not recommended with SB and CSB adhesives on primary teeth. Clinical significance Tannic acid may not be considered in resin restorations of primary teeth. How to cite this article Ebrahimi M, Sarraf Shirazi A, Abdolhoseinpour F, Abdollahi M. Effect of Tannic Acid on Bond Strength of Etch and Rinse and Self-etch Adhesive Systems in Dentin of Primary Teeth. J Contemp Dent Pract 2017;18(1):34-38.


2020 ◽  
Vol 24 (1) ◽  
pp. 21-28
Author(s):  
Ediz Kale ◽  
Ayça Deniz İzgi ◽  
Remzi Niğiz

SummaryBackground/Aim: The purpose of this in-vitro study was to compare the resin-bonded fixed partial dentures (RBFPD) fabricated using two different structural designs and two different antibacterial adhesive lutting protocols in regard to their resistance to debonding.Material and Methods: Forty samples for a model with single missing molar were divided into 4 groups (M1, M2, C1, C2) (n=10). M1 and M2 were prepared in accordance with modified inlay slot-cavity retained RBFPD design; C1 and C2 were prepared according to conventional inlay slot-cavity retained RBFPD design. M1 and C1 cavities were treated with 2% chlorhexidine-based (CHX) cavity disinfectant and 10-methacryloyloxydecyl dihydrogen phosphate (MDP) containing adhesive system; M2 and C2 cavities were treated with MDP and 12-methacryloyloxydodecylpyridinium bromide (MDPB) containing adhesive system featuring antibacterial cavity cleansing effect. The RBFPDs were made of base-metal alloy and their fit surfaces sandblasted with aluminium oxide (Al2O3). Adhesive resin cement was used for cementation, and the RBFPD retainers were interlocked into their corresponding inlay cavities using composite resin. After 1 week being immersed in aqueous environment, the RBFPDs were subjected to tensile loading at a crosshead speed of 1 mm/min until failure. One way ANOVA and Tukey HSD tests were used for statistical evaluation (α=0.05). Mode of failure and tooth damage was also noted.Results: Mean tensile bond strength values were 356 N for M1, 305 N for M2, 467 N for C1, and 455 N for C2. Tensile strength values of C1 and C2 were significantly higher than those of M1 and M2 (p<0.05). The mode of failure was mostly adhesive in character at the metal-cement interface in all groups. Tooth fracture was observed nearly in all specimens. No significant difference was detected between the antibacterial adhesive lutting protocols (p>0.05).Conclusions: The RBFPDs with the conventional design were found to be more retentive than those with the modified design. Using an adhesive system featuring antibacterial properties with no need of separate antibacterial agent application during bonding may be favourable.


2005 ◽  
Vol 16 (2) ◽  
pp. 107-111 ◽  
Author(s):  
Eduardo Batista Franco ◽  
Lawrence Gonzaga Lopes ◽  
Paulo Henrique Perlatti D'Alpino ◽  
José Carlos Pereira

The purpose of this study was to investigate the effect of pH of different adhesive systems on the polymerization of a chemically cured composite resin (Adaptic - AD), by means of tensile bond strength testing. The adhesive systems tested were: ARM, Prime & Bond 2.1 (PB), Scotchbond Multi Purpose (SMP) and Single Bond (SB). Bond strength at the resin/adhesive system/resin interface was assessed. Five groups (n=5) were formed, according to following configuration: G1: AD/ARM/AD; G2: AD/PB/AD; G3: AD/SMP/AD; G4: AD/SB/AD; G5: AD/AD (no adhesive). A two-mold stainless steel matrix with a cone-shaped opening (1-mm-thick; 4 mm in diameter) was used to obtain resin discs. AD resin was inserted into the first mold, left-self curing and an adhesive layer was applied onto resin surface and light-cured. The second mold was assembled over the first and was filled with the resin. After 10 min, this setting was loaded in tension in a universal testing machine running at a crosshead speed of 0.5 mm/min. Data were submitted to one-way ANOVA and Tukey's test (p<0.05). Bond strength means (kgf) were: G1: 15.23 ± 4.1; G2: 0.00 ± 0.0; G3: 16.96 ± 2.4; G4: 10.08 ± 2.7; G5: 15.44 ± 0.9. There were statistically significant differences (p<0.05) between G2-G1; G2-G3; G2-G4; G4-G1; G4-G3. The systems with the lowest pHs (PB and SB) yielded the lowest bond strength. The findings of this in vitro study demostrates that the pH of adhesive systems influences the polymerization and bond strength of chemically cured resin materials. The low pH simplified adhesive systems showed distinct degrees of incompatibility with the chemically cured resin, when compared to the conventional adhesive systems.


Sign in / Sign up

Export Citation Format

Share Document