scholarly journals De Novo Interstitial Deletion of 9q in a Pediatric Patient With Global Developmental Delay

2019 ◽  
Vol 6 ◽  
pp. 2329048X1984492
Author(s):  
Dennis Keselman ◽  
Ram Singh ◽  
Ninette Cohen ◽  
Zipora Fefer

Cytogenomic microarray (CMA) methodologies, including array comparative genomic hybridization (aCGH) and single-nucleotide polymorphism-detecting arrays (SNP-array), are recommended as the first-tier test for the evaluation of imbalances associated with intellectual disability, autism, and multiple congenital anomalies. The authors report on a child with global developmental delay (GDD) and a de novo interstitial 7.0 Mb deletion of 9q21.33q22.31 detected by aCGH. The patient that the authors report here is noteworthy in that she presented with GDD and her interstitial deletion is not inclusive of the 9q22.32 locus that includes the PTCH1 gene, which is implicated in Gorlin syndrome, or basal cell nevus syndrome (BCNS), has not been previously reported among patients with a similar or smaller size of the deletion in this locus suggesting that the genomic contents in the identified deletion on 9q21.33q22.31 is critical for the phenotype.

2015 ◽  
Vol 54 (2) ◽  
pp. 69-73
Author(s):  
Sara Bertok ◽  
Mojca Žerjav Tanšek ◽  
Primož Kotnik ◽  
Tadej Battelino ◽  
Marija Volk ◽  
...  

Abstract Introduction. Developmental delay and dysmorphic features affect 1 - 3 % of paediatric population. In the last few years molecular cytogenetic high resolution techniques (comparative genomic hybridization arrays and single-nucleotide polymorphism arrays) have been proven to be a first-tier choice for clinical diagnostics of developmental delay and dysmorphic features. Methods and results. In the present article we describe the clinical advantages of molecular cytogenetic approach (comparative genomic hybridization arrays and single nucleotide polymorphism arrays) in the diagnostic procedure of two children with developmental delay, dysmorphic features and additional morphological phenotypes. Additionally, we demonstrate the necessity of fluorescent in situ hybridization utilisation to identify the localisation and underlying mechanism of detected chromosomal rearrangement. Conclusions. Two types of chromosomal abnormalities were identified and confirmed using different molecular genetic approaches. Comparative genomic hybridization arrays and single nucleotide polymorphism arrays are hereby presented as important methods to identify chromosomal imbalances in patients with developmental delay and dysmorphic features. We emphasize the importance of molecular genetic testing in patients’ parents for the demonstration of the origin and clinical importance of the aberrations prior determined in the patients. The results obtained using molecular cytogenetic high resolution techniques methods are the cornerstone for proper genetic counselling to the affected families.


2021 ◽  
Vol 47 (1) ◽  
Author(s):  
Gregorio Serra ◽  
Luigi Memo ◽  
Vincenzo Antona ◽  
Giovanni Corsello ◽  
Valentina Favero ◽  
...  

Abstract Introduction In 1973, Petrea Jacobsen described the first patient showing dysmorphic features, developmental delay and congenital heart disease (atrial and ventricular septal defect) associated to a 11q deletion, inherited from the father. Since then, more than 200 patients have been reported, and the chromosomal critical region responsible for this contiguous gene disorder has been identified. Patients’ presentation We report on two unrelated newborns observed in Italy affected by Jacobsen syndrome (JBS, also known as 11q23 deletion). Both patients presented prenatal and postnatal bleeding, growth and developmental delay, craniofacial dysmorphisms, multiple congenital anomalies, and pancytopenia of variable degree. Array comparative genomic hybridization (aCGH) identified a terminal deletion at 11q24.1-q25 of 12.5 Mb and 11 Mb, in Patient 1 and 2, respectively. Fluorescent in situ hybridization (FISH) analysis of the parents documented a de novo origin of the deletion for Patient 1; parents of Patient 2 refused further genetic investigations. Conclusions Present newborns show the full phenotype of JBS including thrombocytopenia, according to their wide 11q deletion size. Bleeding was particularly severe in one of them, leading to a cerebral hemorrhage. Our report highlights the relevance of early diagnosis, genetic counselling and careful management and follow-up of JBS patients, which may avoid severe clinical consequences and lower the mortality risk. It may provide further insights and a better characterization of JBS, suggesting new elements of the genotype-phenotype correlations.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Lili Zhou ◽  
Zhaoke Zheng ◽  
Yunzhi Xu ◽  
Xiaoxiao Lv ◽  
Chenyang Xu ◽  
...  

Abstract Background The phenotypes of uniparental disomy (UPD) are variable, which may either have no clinical impact, lead to clinical signs and symptoms. Molecular analysis is essential for making a correct diagnosis. This study involved a retrospective analysis of 4512 prenatal diagnosis samples and explored the molecular characteristics and prenatal phenotypes of UPD using a single nucleotide polymorphism (SNP) array. Results Out of the 4512 samples, a total of seven cases of UPD were detected with an overall frequency of 0.16%. Among the seven cases of UPD, two cases are associated with chromosomal aberrations (2/7), four cases (4/7) had abnormal ultrasonographic findings. One case presented with iso-UPD (14), and two case presented with mixed hetero/iso-UPD (15), which were confirmed by Methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) as maternal UPD (15) associated with Prader-Willi syndrome (PWS). Four cases had iso-UPD for chromosome 1, 3, 14, and 16, respectively; this is consistent with the monosomy rescue mechanism. Another three cases presented with mixed hetero/isodisomy were consistent with a trisomy rescue mechanism. Conclusion The prenatal phenotypes of UPD are variable and molecular analysis is essential for making a correct diagnosis and genetic counselling of UPD. The SNP array is a useful genetic test in prenatal diagnosis cases with UPD.


Blood ◽  
2010 ◽  
Vol 115 (21) ◽  
pp. 4157-4161 ◽  
Author(s):  
Stefan Heinrichs ◽  
Cheng Li ◽  
A. Thomas Look

Comprehensive analysis of the cancer genome has become a standard approach to identifying new disease loci, and ultimately will guide therapeutic decisions. A key technology in this effort, single nucleotide polymorphism arrays, has been applied in hematologic malignancies to detect deletions, amplifications, and loss of heterozygosity (LOH) at high resolution. An inherent challenge of such studies lies in correctly distinguishing somatically acquired, cancer-specific lesions from patient-specific inherited copy number variations or segments of homozygosity. Failure to include appropriate normal DNA reference samples for each patient in retrospective or prospective studies makes it difficult to identify small somatic deletions not evident by standard cytogenetic analysis. In addition, the lack of proper controls can also lead to vastly overestimated frequencies of LOH without accompanying loss of DNA copies, so-called copy-neutral LOH. Here we use examples from patients with myeloid malignancies to demonstrate the superiority of matched tumor and normal DNA samples (paired studies) over multiple unpaired samples with respect to reducing false discovery rates in high-resolution single nucleotide polymorphism array analysis. Comparisons between matched tumor and normal samples will continue to be critical as the field moves from high resolution array analysis to deep sequencing to detect abnormalities in the cancer genome.


Author(s):  
Shinobu Fukumura ◽  
Takuya Hiraide ◽  
Akiyo Yamamoto ◽  
Kousuke Tsuchida ◽  
Kazushi Aoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document