scholarly journals The parametric instability improvement of fully anisotropic composite plates with embedded shape memory alloy

2020 ◽  
Vol 29 ◽  
pp. 2633366X1989940
Author(s):  
Zarina Yusof ◽  
Zainudin A Rasid ◽  
Mohamad Zaki Hassan ◽  
SM Sapuan ◽  
Shamsul Sarip ◽  
...  

The parametric resonance or instability challenge in designing laminated composite is crucial in areas such as aeronautical and marine where structures experience dynamic loading. Shape memory alloy (SMA), a type of smart material, has been used to improve the structural behaviours of composite plate using its well-known property of shape memory effect. It is also known that mechanical couplings that exist in unsymmetric composite can increase the instability of the composite. In this study, the SMA property has been exploited to generate recovery stress in the composite to improve its parametric instability problem. The unsymmetric composites were embedded with SMA fibres, and the formulation for the dynamic instability of this composites was developed using finite element method. The third-order shear deformation theory of composite was applied. The results were initially validated for the case of composite without SMA. Following that, the parametric instability behaviour of unsymmetric composites was studied under the effect of several parameters. It was found that the mechanical couplings that exist in the unsymmetric composite have increased the instability of the composite, but the presence of the SMA can significantly reduce this instability.

2014 ◽  
Vol 6 ◽  
pp. 232019 ◽  
Author(s):  
Xinkang Li ◽  
Jifa Zhang ◽  
Yao Zheng

Isogeometric analysis (IGA) based on nonuniform rational B-splines (NURBS) is applied for static and free vibration analysis of laminated composite plates by using the third order shear deformation theory (TSDT). TSDT requires C1-continuity of generalized displacements and NURBS basis functions are well-suited for this requirement. Due to the noninterpolatory nature of NURBS basis functions, a penalty method is applied to enforce the essential boundary conditions. The validity and accuracy of the present method are demonstrated through a series of numerical examples of isotropic and laminated composite plates with different shapes, boundary conditions, fiber orientations, lay-up numbers, and so forth. The obtained numerical results are compared with either the analytical solutions or other available numerical methods.


2014 ◽  
Vol 695 ◽  
pp. 52-55 ◽  
Author(s):  
Z.A. Rasid

Shape memory alloy (SMA) wires were embedded within laminated composite plates to take advantage of the shape memory effect (SME) property of the SMA. Active modal modification of SMAC plates was studied using the finite element method (FEM). A linear FEM formulation was developed based on the first order shear deformation theory. The effect of SMA was captured by adding the geometric stiffness matrix to the stiffness matrices of composite plates. Two methods of frequency improvements are considered here: The active property tuning (APT) and the active strain energy tuning (ASET) methods. The values of recovery stress for the ASET analysis were determined from Brinson’s model. The effects of several parameters on the natural frequencies of the SMAC plates were studied. It was found that the effect of SMA is similar for couples of frequency modes where frequencies of mode I and IV seems to have affected the most by SMA.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1771
Author(s):  
Michele Bacciocchi ◽  
Angelo Marcello Tarantino

The aim of the paper is the development of a third-order theory for laminated composite plates that is able to accurately investigate their bending behavior in terms of displacements and stresses. The starting point is given by the corresponding Reddy’s Third-order Shear Deformation Theory (TSDT). This model is then generalized to consider simultaneously the Classical Laminated Plate Theory (CLPT), as well as the First-order Shear Deformation Theory (FSDT). The constitutive laws are modified according to the principles of the nonlocal strain gradient approach. The fundamental equations are solved analytically by means of the Navier methodology taking into account cross-ply and angle-ply lamination schemes. The numerical applications are presented to highlight the nonlocal effects on static behavior.


2014 ◽  
Vol 709 ◽  
pp. 148-152
Author(s):  
Guo Qing Zhou ◽  
Ji Wang ◽  
Song Xiang

Sinusoidal shear deformation theory is presented to analyze the natural frequencies of simply supported laminated composite plates. The governing differential equations based on sinusoidal theory are solved by a Navier-type analytical method. The present results are compared with the available published results which verify the accuracy of sinusoidal theory.


Sign in / Sign up

Export Citation Format

Share Document