The interface between corrosion fatigue and stress-corrosion cracking

Metal Science ◽  
1977 ◽  
Vol 11 (8-9) ◽  
pp. 405-413 ◽  
Author(s):  
R. N. Parkins ◽  
B. S. Greenwell
Author(s):  
Zhigang Wei ◽  
Limin Luo ◽  
Marek Rybarz ◽  
Kamran Nikbin

Corrosion-fatigue and stress corrosion cracking have long been recognized as the principal degradation and failure mechanisms of materials under combined corrosive environment and sustained/cyclic loading conditions. These phenomena are strongly material and environment dependent, and cycle-dependent fatigue and time-dependent matter diffusion/chemical reaction at the crack tip can be operational simultaneously. How to include these cycle-dependent and time-dependent phenomena in a single model and how to study the failure mechanisms interaction are big challenges posed to material scientists and engineers. In this paper the current linear superposition theories for modeling cycle-dependent and time-dependent corrosion-fatigue and stress corrosion cracking phenomena are reviewed first. Subsequently, a generalized nonlinear superposition theory is proposed to incorporate possible nonlinear interaction or synergistic effect among the underlying mechanisms. The unified model derived from the new theory, depending on the specific materials and loading condition and environment, can be reduced to pure corrosion, pure fatigue, stress corrosion cracking and corrosion-fatigue. Finally, for the first time, a new breakthrough parameter is defined in this paper to quantitatively describe the interaction or synergistic effect between two different operating mechanisms, such as time- and cycle-dependent mechanisms.


Author(s):  
Gang Chen ◽  
Puning Jiang ◽  
Xingzhu Ye ◽  
Junhui Zhang ◽  
Yifeng Hu ◽  
...  

Although stress corrosion cracking (SCC) and corrosion fatigue cracking can occur in many locations of nuclear steam turbines, most of them initiate at low pressure disc rim, rotor groove and keyway of the shrunk-on disc. For nuclear steam turbine components, long life endurance and high availability are very important factors in the operation. Usually nuclear power plants operating more than sixty years are susceptible to this failure mechanism. If SCC or corrosion fatigue happens, especially in rotor groove or keyway, it has a major influence on nuclear steam turbine life. In this paper, established methods for the SCC and corrosion fatigue-controlled life prediction of steam turbine components were applied to evaluating a new shrunk-on disc that had suffered local keyway surface damage during manufacture and loss of residual compressive stress.


Sign in / Sign up

Export Citation Format

Share Document