Volume 1B: Marine; Microturbines, Turbochargers and Small Turbomachines; Steam Turbines
Latest Publications


TOTAL DOCUMENTS

85
(FIVE YEARS 0)

H-INDEX

5
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791845585

Author(s):  
Naoki Shibukawa ◽  
Yoshifumi Iwasaki ◽  
Yoshiaki Takada ◽  
Itaru Murakami ◽  
Takashi Suzuki ◽  
...  

A shutdown operation of a large size steam turbine could possibly cause flashing phenomena of the pooled drain water in low-pressure heaters. The boiled steam is sometimes in the same amount as the main flow in the case where shutdown is executed during low load conditions, and returns to the steam flow path through the extraction lines. A series of experimental work with a subscale model turbine facility has been carried out to investigate the vibration stress behavior, and the steady and unsteady pressures under the flashing back conditions. It was observed that the blades of the two stages before the last stage (L-2) and a stage before the last stage (L-1) presented their peak vibration stresses immediately after the flash-back flow reached the turbine. In the meantime, the vibration stresses of the last stage (L-0) blades were reduced for a few tens of seconds. It can be thought that the flash-back flow pushed out the reverse flow region around the L-0 blades and allow the blades to be more stable. A detailed examination with measured data of the L-2 blade explained that, as long as the flash-back flow has small wetness, the blade is excited in its specific vibration modes in larger than 8th harmonic of rotational speed, but once the flash back flow carries water droplets, the fluid force in random frequencies remarkably increases and excites the blade in less than 7th harmonic range.


Author(s):  
M. Schatz ◽  
T. Eberle ◽  
M. Grübel ◽  
J. Starzmann ◽  
D. M. Vogt ◽  
...  

The correct computation of steam subcooling, subsequent formation of nuclei and finally droplet growth is the basic prerequisite for a quantitative assessment of the wetness losses incurred in steam turbines due to thermal and inertial relaxation. The same basically applies for the prediction of droplet deposition and the resulting threat of erosion. Despite the fact that there are many CFD-packages that can deal with real-gas effects in steam flows, the accurate and reliable prediction of subcooling, condensation and wet steam flow in steam turbines using CFD is still a demanding task. One reason for this is the lack of validation data for turbines that can be used to assess the physical models applied. Experimental data from nozzle and cascade tests can be found in the open literature; however, this data is only partly useful for validation purposes for a number of reasons. With regard to steam turbine test data, there are some publications, yet always without any information about the turbine stage geometries. This publication is part of a two-part paper; whereas part 1 focuses on the numerical validation of wet steam models by means of condensing nozzle and cascade flows, the focus in this part lies on the comparison of CFD results of the turbine flow to experimental data at various load conditions. In order to assess the validity and reliability of the experimental data, the method of measurement is presented in detail and discussed. The comparison of experimental and numerical results is used for a discussion about the challenges in both modeling and measuring steam turbine flows, presenting the current experience and knowledge at ITSM.


Author(s):  
Serdar Üşenmez ◽  
Sinan Ekinci ◽  
Oğuz Uzol ◽  
İlkay Yavrucuk

Having a small-scale turbojet engine operate at a desired speed with minimum steady state error, while maintaining good transient response is crucial in many applications, such as UAVs, and requires precise control of the fuel flow. In this paper, first the mathematical model of a Small-Scale Turbojet Engine (SSTE) is obtained using system identification tests, and then based on this model, a classical PI controller is designed. Afterwards, to improve on the transient response and steady state performance of this classical controller, a Fuzzy Logic Controller (FLC) is designed. The design process for the FLC employs logical deduction based on knowledge of the engine behavior and iterative tuning in the light of software- and hardware-in-the-loop simulations. The classical and fuzzy logic controllers are both implemented on an in-house, embedded Electronic Control Unit (ECU) running in real time. This ECU is an integrated device carrying a microcontroller based board, a fuel pump, fuel line valves, speed sensor and exhaust gas temperature sensor inputs, and starter motor and glow plug driver outputs. It mainly functions by receiving a speed reference value via its serial communication interface. Based on this reference, a voltage is calculated and applied to the fuel pump in order to regulate the fuel flow into the engine, thereby bringing the engine speed to the desired value. Pre-defined procedures for starting and stopping the engine are also automatically performed by the ECU. Further, it connects to a computer running an in-house comprehensive Graphical User Interface (GUI) software for operating, monitoring, configuration and diagnostics purposes. The designed controllers are used to drive a generic SSTE. Reference inputs consisting of step, ramp and chirp profiles are applied to the controllers. The engine response using both controllers are recorded and inspected. The results show that the FLC exhibits a comparable performance to the classical controller, with possible opportunities to improve this performance.


Author(s):  
M. Häfele ◽  
J. Starzmann ◽  
M. Grübel ◽  
M. Schatz ◽  
D. M. Vogt ◽  
...  

A numerical study on the flow in a three stage low pressure industrial steam turbine with conical friction bolts in the last stage and lacing wires in the penultimate stage is presented and analyzed. Structured high-resolution hexahedral meshes are used for all three stages and the meshing methodology is shown for the rotor with friction bolts and blade reinforcements. Modern three-dimensional CFD with a non-equilibrium wet steam model is used to examine the aero-thermodynamic effects of the part-span connectors. A performance assessment of the coupled blades at part load, design and overload condition is presented and compared with measurement data from an industrial steam turbine test rig. Detailed flow field analyses and a comparison of blade loading between configurations with and without part-span connectors are presented in this paper. The results show significant interaction of the cross flow vortex along the part-span connector with the blade passage flow causing aerodynamic losses. This is the first time that part-span connectors are being analyzed using a non-equilibrium wet steam model. It is shown that additional wetness losses are induced by these elements.


Author(s):  
Yoshihiro Kuwamura ◽  
Kazuyuki Matsumoto ◽  
Hidekazu Uehara ◽  
Hiroharu Ooyama ◽  
Yoshinori Tanaka ◽  
...  

As key technologies to improve the performance of steam turbines, various types of high performance seal, such as active clearance control (ACC) seals and leaf seals [1], have been developed by Mitsubishi Heavy Industries, LTD (MHI). In recent years, a new seal concept using an aerodynamic approach called “aero seal” has also been developed, which remarkably reduces the leakage flow while maintaining fin clearances. Furthermore, more robust and higher performance sealing technology called “abradable-aero hybrid seal” which combines the aero seal concept with the abradable seal technology was proposed. The main concept of the aero seal is to control and utilize the vortex structure in the cavities of the labyrinth seal. In the cavities of the aero seal, the locally-controlled flow on the upstream side of the fin tip causes a strong contraction of the leakage flow and reduces the discharge coefficient significantly. This concept allows for a remarkably reduced leakage flow while maintaining fin clearances. Moreover, in order to achieve more robust and higher performance by minimizing the fin clearances, the abradable seal technology was applied to the aero seal concept. However, when the abradable seal is applied, the grooves may be formed on the wall surface of the abradable material due to rubbing of the fin into the abradable material. This situation leads to concern that the groove breaks the effective vortex structure of aero seal and causes negative effects on the seal performance. In this paper, the improved aero seal configuration consisting of slant fins was proposed and it was verified that the reduction in the discharge coefficient of improved aero seal is up to 40% compared to the conventional labyrinth seal. Furthermore, more robust and higher performance sealing technology called “abradable-aero hybrid seal” was proposed and basic characteristics such as the effects of the presence of grooves, the axial position of the fin and seal clearance on the leakage mass flow and the vortex structure were parametrically investigated both experimentally and numerically. In the experiments, not only leakage mass flow measurements but also PIV measurements were carried out in order to visualize the flow patterns in the cavity of the abradable-aero hybrid seal. From the results, it was confirmed that the effective vortex structures were formed even with grooves at various fin positions and the leakage flow can be stably reduced over 40% in a wide range of axial position and reduced by 50% at the optimum position.


Author(s):  
S. Brussk ◽  
A. Schrey ◽  
J. Barnikel ◽  
D. Weltersbach ◽  
H. Starwald

The modern energy mix demands a flexible operation with an increased number of fast starts, and this results in enhanced requirements for the steam turbine and its components. Turbine admission valves, which are increasingly operated under instationary conditions to follow the changing power grid requirements, are mainly in charge. Therefore, continuous improvement of the tribological characteristics and oxidation resistance of valve components is required. This paper discusses technical experience in steam turbine valve hard-facings over time, the current status and developments in this regard. Typical wear and crack findings of CoCr-based hard-facings are presented. The relevant investigations on the crack formation mechanism resulted in requirements and influences for the development of the current hard-facings. These concepts made for new products and service applications are introduced. Furthermore, in consideration of a future increase in flexibility and efficiency demands, technical requirements for functional coatings are specified, and the development results of an integrated material concept are depicted.


Author(s):  
Zhenzhen Hao ◽  
Puning Jiang ◽  
Xingzhu Ye ◽  
Gang Chen ◽  
Yifeng Hu ◽  
...  

Cogeneration has been identified as a key technical solution to improve environment, by reducing the impact of global climate change and reducing local emissions, such as particulates, sulphur and nitrogen oxides. In cogeneration, a certain pressure of steam has to be extracted from steam turbine. A mechanical device shall be used to maintain the pressure of the extracted steam. In this paper a new steam chest with valve used for cogeneration which is installed in the steam flow is introduced. Different amount of steam extractions need different valve openings. In order to obtain these several valve openings in typical operating conditions, CFD-program is used to simulate the flow path in the steam chest. The pressure distribution on the surface of valve disc can be calculated through CFD method, and corresponding steady aerodynamic forces and torques can be calculated by integral. Pulsatile flow will change the forces and moments acting on the valve discs with time constantly. Frequency spectrograms of the aerodynamic forces are obtained by using the fast Fourier transforms and compared to the characteristic frequencies of the valve disc obtained by mode analysis. For the purpose of validating the accuracy of CFD model, a test with test model scale of 1:5 has been designed. In the test, the pressure distribution on the valve disc surface and the flow field in the steam chest are acquired respectively by the method PSP (Pressure-Sensitive Paint) and PIV (Particle Image Velocimetry). CFD calculations and experimental results have been compared and it is shown that CFD calculations using K-ε turbulence model has satisfactory precision to calculate the pressure distribution, flow field and the torques.


Author(s):  
Christian Siewert ◽  
Heinrich Stüer

It is well-known that the vibrational behavior of a mistuned bladed disk differs strongly from that of a tuned bladed disk. A large number of publications dealing with the dynamics of mistuned bladed disks is available in the literature. The vibrational phenomena analyzed in these publications are either forced vibrations or self-excited flutter vibrations. Nearly all published literature on the forced vibrations of mistuned blades disks considers harmonic, i. e. steady-state, vibrations, whereas the self-excited flutter vibrations are analyzed by the evaluation of the margin against instabilities by means of a modal, or rather than eigenvalue, analysis. The transient forced response of mistuned bladed disk is not analyzed in detail so far. In this paper, a computationally efficient mechanical model of a mistuned bladed disk to compute the transient forced response is presented. This model is based on the well-known Fundamental Model of Mistuning. With this model, the statistics of the transient forced response of a mistuned bladed disk is analyzed and compared to the results of harmonic forced response analysis.


Author(s):  
Yanbin Liu ◽  
Weilin Zhuge ◽  
Yangjun Zhang ◽  
Shuyong Zhang ◽  
Junyue Zhang ◽  
...  

The turbine system of a two-stage turbocharger composed of high pressure turbine, low pressure turbine and by-pass valve decides distribution and utilization of exhaust gas energy and influence performance of two-stage turbocharger in whole operational conditions. Besides, characteristics of turbine is expressed by envelop line of characteristic lines in different speeds. So turbine can be conveniently selected compared with compressor with similarity theory. Therefore two-stage turbocharger matching begins from turbine system matching in the paper. In two-stage turbocharger, cooler efficiency, cooler loss and by-pass valve open besides turbochargers will influence turbocharging system performance and design of cooler and by-pass valve are important contents of turbocharging system matching. The paper matched inter cooler, by-pass valve open, compressors and turbines jointly. Calculation model for turbocharger matching was built, and turbine performance is get from reference turbine based on similarity theory; influence of compressor ratio distribution, cooler efficiency and pressure drop in cooler imposing on compressor work was analyzed; and influence of turbine flow capacity and by-pass valve imposing on output working in expanding process was studied; the method for matching of two-stage turbocharging system in whole operational condition is studied Matching analysis was made aiming at two-stage turbocharging system of a type of high power density diesel engine, and design for turbocharging system was finished. Matching result using the method is compared to matching result using traditional method. Analysis result proves that using the method matching points in different operational conditions are located in more reasonable zone of compressor MAP.


Author(s):  
Zhiqiang Hu ◽  
Wei Wang ◽  
Puning Jiang ◽  
Qinghua Huang ◽  
Jianhua Wang ◽  
...  

This paper presents a seismic analysis on steam turbine within a Nuclear Power Plant. Firstly, considering that steam turbine is a kind of large equipment with complex structure, high precision and tightly connected with other equipments and structure, this paper coupled together the steam turbine, condenser and its spring foundation as a whole structure for analysis, and created detailed finite analysis models for almost each part. Secondly, the detailed model of steam turbine, condenser and spring foundation was analyzed separately to obtain their dynamic properties (inertia, eigenvalues etc.) to verify whether the detailed finite analysis models were correct and proper. Thirdly, with seismic analysis on the whole structure with time-history method, relative displacement time history curves of some places, as well as stress response of LP (low pressure) outer and inner case, was extracted. Finally, the anti-seismic performance of steam turbine, such as rotor gaps using those relative displacement and stress response results, was analyzed and evaluated.


Sign in / Sign up

Export Citation Format

Share Document