High temperature creep resistance of metal matrix composites

1997 ◽  
Vol 13 (4) ◽  
pp. 327-330 ◽  
Author(s):  
Z. Fan
2013 ◽  
Vol 212 ◽  
pp. 247-254
Author(s):  
Marek Cieśla ◽  
Franciszek Binczyk ◽  
Marcin Mańka

mpact of complex modification and filtration during pouring into moulds on durability has been evaluated in this study in conditions of high-temperature creep of castings made from nickel superalloy IN-713C post production rejects. The conditions of initiation and propagation of cracks in the specimens were analysed with consideration of morphological properties of material macro-, micro-and substructure. It has been demonstrated that in conditions of high-temperature creep at temperature 980°C with stress σ =150 MPa creep resistance of the IN-713C superalloy increases significantly with the increase of macrograin size. Creep resistance of specimens made of coarse grain material was significantly higher than the resistance of fine grain material.


1989 ◽  
Vol 111 (1) ◽  
pp. 99-105 ◽  
Author(s):  
Z. G. Zhu ◽  
G. J. Weng

A multiaxial theory of creep deformation for particle-strengthened metal-matrix composites is derived. This derivation is based on the observation that there are two major sources of creep resistance in such a system. The first, or metallurgical effect, arises from the increased difficulty of dislocation motion in the presence of particles and is accounted for by a size- and concentration dependent constitutive equation for the matrix. The second, or mechanics effect, is due to the continuous transfer of stress from the ductile matrix to the hard particles and the corresponding stress redistribution is also incorporated in the derivation. Both power-law creep and exponential creep in the matrix, each involving the transient as well as the steady state, are considered. The constitutive equations thus derived can provide the development of creep strain of the composite under a combined stress. The multiaxial theory is also simplified to a uniaxial one, whose explicit stress-creep strain-time relations at a given concentration of particles are also given by a first- and second-order approximation. The uniaxial theory is used to predict the creep deformation of an oxide-strengthened cobalt, and the results are in reasonably good agreement with the experiment. Finally, it is demonstrated that a simple metallurgical approach without considering the stress redistribution between the two constituent phases, or a simple mechanics approach without using a modified constitutive equation for the metal matrix, may each underestimate the creep resistance of the composite, and, therefore, it is important that both factors be considered in the formulation of such a theory.


2003 ◽  
Vol 93 (10) ◽  
pp. 7118-7120 ◽  
Author(s):  
S. Liu ◽  
S. Bauser ◽  
Z. Turgut ◽  
J. Coate ◽  
R. T. Fingers

Sign in / Sign up

Export Citation Format

Share Document