Relationship between mechanical properties and structure in austempered alloyed compacted graphite cast iron

1998 ◽  
Vol 14 (3) ◽  
pp. 241-244 ◽  
Author(s):  
B. T. Sim ◽  
R. Elliott
2011 ◽  
Vol 383-390 ◽  
pp. 5880-5885
Author(s):  
Omar Elmabrouk ◽  
Osama M. Erfan ◽  
Ali Kalkanli

This paper is concerned with the investigation of the effect of magnesium to sulfur ratio on the graphite morphology and estimation of the ranges of this ratio use to produce graphite cast iron at different section sections. The main factors affecting shape of graphite cast iron are the metallurgical structures and the section thicknesses. Cast iron of different shapes of graphite particles directly affect its thermo-mechanical properties. The nodular shape of these graphite particles such as in ductile cast iron improve its mechanical properties, on the other hand, when the shape of these graphite particles become elongated such as in flake graphite cast iron results in improving its thermal conductivity. In between, the worm-like shape of these graphite particles such as in compacted graphite cast iron, make this type of cast iron to have thermo-mechanical properties in between those of ductile and flake graphite cast iron. The different types of ductile , compacted and flake graphite cast iron were produced by means of plunger method at different section thicknesses and the effect of Mg/S ratio on these types of graphite particles was investigated and its range was established.


2016 ◽  
Vol 31 (16) ◽  
pp. 2516-2523 ◽  
Author(s):  
Yangzhen Liu ◽  
Jiandong Xing ◽  
Yefei Li ◽  
Yong Wang ◽  
Lei Wang ◽  
...  

Abstract


2019 ◽  
Vol 50 (8) ◽  
pp. 3697-3704
Author(s):  
Wu Yue ◽  
Li Jianping ◽  
Yang Zhong ◽  
Guo Yongchun ◽  
Ma Zhijun ◽  
...  

2018 ◽  
Vol 925 ◽  
pp. 90-97 ◽  
Author(s):  
Juan Carlos Hernando ◽  
Attila Diószegi

It is widely accepted that in most commercial hypoeutectic alloys, both static mechanical properties and feeding characteristics during solidification, are extremely linked to the coarseness of the primary phase. It is therefore of critical importance to provide tools to control and predict the coarsening process of the dendritic phase present in hypoeutectic melts. The characterization of the primary phase, a product of the primary solidification, has traditionally been neglected when compared to the eutectic solidification characterization in cast iron investigations. This work presents the morphological evolution of the primary austenite present in a hypoeutectic compacted graphite cast iron (CGI) under isothermal conditions. To that purpose, a base spheroidal graphite cast iron (SGI) material with high Mg content is re-melted in a controlled atmosphere and reversed into a CGI melt by controlling the Mg fading. An experimental isothermal profile is applied to the solidification process of the experimental alloy to promote an isothermal coarsening process of the primary austenite dendrite network during solid and liquid coexistence. Through interrupted solidification experiments, the primary austenite is preserved and observed at room temperature. By application of stereological relations, the primary phase and its isothermal coarsening process are characterized as a function of the coarsening time applied. The microstructural evolution observed in the primary austenite in CGI and the measured morphological parameters show a similar trend to that observed for lamellar graphite cast iron (LGI) in previous investigations. The modulus of the primary austenite, Mγ, and the nearest distance between the centre of gravity of neighbouring austenite particles, Dγ, followed a linear relation with the cube root of coarsening time.


Sign in / Sign up

Export Citation Format

Share Document