A Potential Flow Solver for Nonlinear Free Surface Problems Based on the Finite Volume Method

2006 ◽  
Vol 53 (2) ◽  
pp. 55-62
Author(s):  
Jussi Martio ◽  
2007 ◽  
Vol 51 (01) ◽  
pp. 47-64
Author(s):  
James C. Huan ◽  
Thomas T. Huang

A fast turnaround and an accurate computational fluid dynamics (CFD) approach for ship total resistance prediction is developed. The approach consists of a nonlinear free surface potential flow solver (PShip code) with a wet-or-dry transom stern model, and a Reynolds-averaged Navier-Stokes (RANS) equation solver that solves viscous free surface flow with a prescribed free surface given from the PShip. The prescribed free surface RANS predicts a viscous correction to the pressure resistance (viscous form) and viscous flow field around the hull. The viscous free surface flow solved this way avoids the time-consuming RANS iterations to resolve the free surface profile. The method, however, requires employing a flow characteristic-based nonreflecting boundary condition at the free surface. The approach can predict the components of ship resistance, the associated wave profile around the hull, and the sinkage and trim of the ship. Validation of the approach is presented with Wigley, Series 60 (CB = 0.6), and NSWCCD Model 5415 hulls. An overall accuracy of ±2% for ship total resistance prediction is achieved. The approach is applied to evaluating the effects of a stern flap on a DD 968 model on ship performance. An empirical viscous form resistance formula is also devised for a quick ship total resistance estimate.


2014 ◽  
Vol 2014.27 (0) ◽  
pp. 729-730
Author(s):  
Sadanori Ishihara ◽  
Kenichi Matsuno ◽  
Masashi Yakmakawa

2018 ◽  
Vol 28 (3) ◽  
pp. 248-254 ◽  
Author(s):  
Georgios Fourtakas ◽  
Peter Stansby ◽  
Benedict Rogers ◽  
Steven Lind ◽  
Shiqiang Yan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document