free surface wave
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 14)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Vol 9 (12) ◽  
pp. 1330
Author(s):  
Bang-Fuh Chen ◽  
Yi-Jei Huang

A numerical model was used to simulate the propagation of internal waves (IW) along the surface layer. The results show that strong water exchange during IW propagation results in strong free surface flow and produces small but distinct free surface waves. We found a close relationship between the internal and ocean surface waves. Our intuitive reaction is that by training the relationship between the water surface wave height and the internal wave waveform, the internal wave waveform can be reversed from the water surface wave height value. This paper intends to validate our intuition. The artificial neural network (ANN) method was used to train the Fluent simulated results, and then the trained ANN model was used to predict the inner waves below by the free surface wave signal. In addition, two linear internal wave equations (I and II) were derived, one based on the Archimedes principle and the other based on the long wave and Boussinesq approximation. The prediction by equation (II) was superior to the prediction of equation (I), which is independent of depth. The predicted IW of the proposed ANN method was in good agreement with the simulated results, and the predicted quality was much better than the two linear wave formulas. The proposed simple method can help researchers infer the magnitude of IW from the free surface wave signal. In the future, the spatial distribution of IW below the sea surface might be obtained by the proposed method without costly field investigation.


Author(s):  
Song Gao ◽  
Bin Teng

Abstract A wave and current diffraction model is developed based on the potential flow theory and a high-order boundary element method with the successful treatment of singular and nearly singular integrals. The wave-current diffraction from four mounted cylindrical columns are computed, and the free surface wave elevations among the columns are investigated. The influences of the current speed, wave direction, and column spacing on the wave elevation are examined. Ultimately, the presence of a current has a significant influence on the magnitude, spatial location and occurrence frequency of the maximum wave elevation.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Aimeng Zhu ◽  
Mi-An Xue ◽  
Xiaoli Yuan ◽  
Feng Zhang ◽  
Wei Zhang

Sloshing is associated with the structural safety of liquid storage vessel. Installing the baffles inside the containers would be beneficial for the mitigating the damage due to the severe sloshing. In this study, an innovative type of double-side curved baffle was proposed to evaluate its effect on reducing sloshing in a rectangular tank under surge and pitch excitation. For comparison with conventional baffles, effects of the vertical baffle and the T-type baffle on mitigating sloshing were also studied experimentally and numerically by analyzing the free surface wave elevation as well as the hydrodynamic pressure on the tank wall. The effective stress at the double-side curved baffle along the height direction of the baffle is much smaller than that at the T-type baffle although they have the same mitigation effect on sloshing wave heights. The sloshing-induced effective stress on the double-side curved baffles was analyzed by varying their radian. Findings show that the effective stress on the baffle tends to decrease with the increase in the radian. The velocity field was presented to observe effect of the baffles on sloshing with the aid of ADINA and laboratory experiments conducted on a hexapod motion platform.


Author(s):  
Yunfei Teng ◽  
Lin Lu ◽  
Liang Cheng, Feifei Tong ◽  
Guoqiang Tang

The boundary layer flow induced by surface waves has been extensively investigated due to its significance in engineering applications such as sediment transport and hydrodynamic forces on subsea structures. Several forms of defect functions (referred to as DF hereafter) were developed in the past decades, e.g. Sleath (1970, 1982), Nielsen (1985, 2016) and etc., due to their good efficiency in the description of the velocity distribution in one dimensional wave boundary layer (WBL). In this work, two forms of DFs are proposed: (i) DF-I describes the velocity distributions and bottom shear stresses in phase space with 4 model parameters; (ii) DF-II describes the maximum WBL profile with 3 model parameters. A number of datasets to support the validation of the DFs were obtained through experimental and numerical tests. Two sets of experiments were conducted individually in a free-surface-wave flume located in Dalian University of Technology and an oscillating-flow flume located in the University of Western Australia. For the free surface wave tests, the velocity was measured.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/RK-z0Q8rTjk


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Obai Kargbo ◽  
Mi-An Xue ◽  
Jinhai Zheng

Abstract Sloshing control is key in the offshore storage and transportation of petroleum and other liquid phased products such as liquid natural gas (LNG). It is of interest in the enhancement of the structural stability of offshore platforms and floating production storage and offloading units. This work presents a numerical approach in the study and analysis of the effect of storage tank configurations on the hydrodynamic response of a multiphase-layered fluid undergoing sloshing. The study showed that tank configurations had an effect on the internal and free surface wave heights of the multiphase fluid sloshing in the tank, as well as on the dynamic pressure intensity being exerted on the tank walls, with some configurations exhibiting comparatively greater sloshing wave and pressure damping.


2020 ◽  
Vol 104 ◽  
pp. 102376
Author(s):  
Hongchao Wang ◽  
Wenhua Zhao ◽  
S. Draper ◽  
H.A. Wolgamot ◽  
P.H. Taylor

2020 ◽  
Vol 142 (12) ◽  
Author(s):  
Abdullah Alshaya ◽  
Khalid Alghanim

Abstract The residuals of liquid free-surface wave oscillations induced by a rest-to-rest crane maneuver of a suspended liquid container are eliminated using a command-shaped profile. The dynamics of liquid sloshing are modeled using an equivalent mechanical model based on a series of mass-spring-damper systems. The proposed model considers the excited frequencies of the container swing motion and liquid sloshing modes. The objective is to design a discrete-time shaped acceleration profile with a variable command length that controls the moving crane-jib, while suppressing the sloshing modes. Simulations are conducted to illustrate the command effectiveness in eliminating liquid sloshing with a wide variation range of system and command-designing parameters; liquid depth, cable length, command duration, and the employing of higher sloshing modes in representing the sloshing dynamics. The command sensitivity of the input command to changes of the system parameters are treated as well. A refined and smooth input command based on suppressing the residuals of multimodes is also introduced. Furthermore, the command effectiveness was supported by a comparison with the time-optimal flexible-body control and multimode zero vibration input shaper.


Author(s):  
Sunny Kumar Poguluri ◽  
Il-Hyoung Cho

Liquid sloshing inside a tank with a slotted porous screen at the center is studied based on numerical and experimental methods. Slotted screens with three different porosities (0.0964, 0.1968 and 0.3022) for two submergence depths of 1 and 2 cm have been considered. One of the main advantages of the slotted screens is that the resonance frequency of the sloshing tank can be altered and the sloshing-induced motion/load can be suppressed by energy dissipation across the porous screen. The complexities of slotted screens equipped in a sloshing tank are accompanied by wave breaking, jet formation and liquid fragmentations which are commonly seen phenomena across the porous screen. These violent free surface behaviors in a tank are studied based on numerical simulations using the incompressible turbulent model and compared with the experiments. For the numerical sloshing tank with porous screen, free surface elevation and pressure at the tank wall are in good agreement with the experimental results. The adopted numerical technique will be able to capture the nonlinear free surface wave profile, air entrapment and jet formation across the screen in agreement with the experiments. For the fully submerged screen, the lowest resonance period shifted slightly to higher values. The sloshing tank equipped with porous screen of 0.1968 for the fully submerged screen predicted lower values of the amplification factor and pressure at the tank wall compared to other cases.


Author(s):  
D. M. Barnett

We undertake a study of subsonic free surface (Rayleigh) waves in linear elastic half-spaces of general anisotropy when the wave polarization vector lies in the half-space boundary , if and when the formalism due to A. N. Stroh exhibits semi-simple degeneracy at the Rayleigh speed v R . It is shown that the class of subsonic steady wave motions at any subsonic velocity exhibiting semi-simple degeneracy includes a free surface wave whenever the first transonic state is not exceptional, in accordance with general surface wave theory. Furthermore, such a free surface wave is always necessarily boundary-polarized ! In general, the restrictions on the half-space elastic constants permitting the existence of semi-simplicity in steady motion at a subsonic phase speed are not satisfied in any physically realized medium which is elastically stable, but we outline an algorithm which allows one to construct the elastic stiffnesses of media which exist mathematically and allow for the existence of subsonic free surface waves (which are necessarily boundary-polarized) under conditions of semi-simple degeneracy in the sense of Stroh's formalism.


Sign in / Sign up

Export Citation Format

Share Document