Crystal chemistry of basic lead carbonates. III. Crystal structures of Pb3O2(CO3) and NaPb2(OH)(CO3)2

2000 ◽  
Vol 64 (6) ◽  
pp. 1077-1087 ◽  
Author(s):  
S. V. Krivovichev ◽  
P. C. Burns

AbstractThe crystal structures of synthetic Pb3O2(CO3) and NaPb2(OH)(CO3)2, have been solved by direct methods and refined to R = 0.062 and 0.024, respectively. Pb3O2(CO3) is orthorhombic, Pnma, a = 22.194(3), b = 9.108(1), c = 5.7405(8) Å, V = 1160.4(3) Å3, Z = 8. There are four symmetrically distinct Pb2+ cations in irregular coordination polyhedra due to the effect of stereoactive s2 lone electron pairs. The structure is based upon double [O2Pb3] chains of [O(1)Pb4] and [O(2)Pb4] oxocentred tetrahedra and CO3 groups. The [O2Pb3] chains are parallel to the c axis, whereas the CO3 groups are parallel to the (010) plane. NaPb2(OH)(CO3)2 is hexagonal, P63mc, a = 5.276(1), c = 13.474(4)Å, V = 324.8(1) Å3, Z = 2 and has been solved by direct methods. There are two symmetrically distinct Pb2+ cations in asymmetric coordination polyhedra due to the effect of stereoactive s2 lone-electron pairs. The single symmetrically unique Na+ cation is in trigonal prismatic coordination. The structure is based on hexagonal sheets of Pb atoms. Within these sheets, Pb atoms are located at vertices of a 36 net, such that each Pb atom has six adjacent Pb atoms that are ~5.3 Å away. Two sheets are stacked in a close-packing arrangement, forming layers that contain the (CO3) groups. The layers are linked by OH groups that are linearly coordinated by two Pb2+ cations. Na+ cations are located between the layers. The structure is closely related to the structures of other lead hydroxide carbonates (leadhillite, macphersonite, susannite, hydrocerussite, ‘plumbonacrite’).

2013 ◽  
Vol 69 (12) ◽  
pp. 1503-1508 ◽  
Author(s):  
Thazhe Kootteri Prasad ◽  
M. V. Rajasekharan

Three three-dimensional coordination polymers,viz.poly[[diaqua-μ4-oxydiacetato-di-μ4-sulfato-dipraseodymium(III)] hemihydrate], [Pr2(C4H4O5)(SO4)2(H2O)2]·0.5H2O, (I), poly[[diaquadi-μ3-oxydiacetato-μ3-sulfato-dineodymium(III)] 1.32-hydrate], [Nd2(C4H4O5)2(SO4)(H2O)2]·1.32H2O, (II), and poly[[diaquadi-μ3-oxydiacetato-μ3-sulfato-disamarium(III)] 1.32-hydrate], [Sm2(C4H4O5)2(SO4)(H2O)2]·1.32H2O, (III), were obtained by hydrothermal reactions of the respective lanthanide oxides and ZnSO4with oxydiacetic acid (odaH2). The Nd3+and Sm3+compounds form isomorphous crystal structures in which the lanthanide cations are nine-coordinate, having a tricapped trigonal prismatic coordination. The Pr3+compound has an entirely different crystal structure in which two types of coordination polyhedra are observed,viz.nine-coordinate (trigonal prism) and ten-coordinate (bicapped square antiprism). The sulfate anions show various coordination modes, one of which has only rarely been observed crystallographically to date.


Chemistry ◽  
2020 ◽  
Vol 2 (4) ◽  
pp. 805-826 ◽  
Author(s):  
Radovan Černý ◽  
Matteo Brighi ◽  
Fabrizio Murgia

The crystal structures of inorganic hydroborates (salts and coordination compounds with anions containing hydrogen bonded to boron) except for the simplest anion, borohydride BH4−, are analyzed regarding their structural prototypes found in the inorganic databases such as Pearson’s Crystal Data [Villars and Cenzual (2015), Pearson’s Crystal Data. Crystal Structure Database for Inorganic Compounds, Release 2019/2020, ASM International, Materials Park, Ohio, USA]. Only the compounds with hydroborate as the only type of anion are reviewed, although including compounds gathering more than one different hydroborate (mixed anion). Carbaborane anions and partly halogenated hydroborates are included. Hydroborates containing anions other than hydroborate or neutral molecules such as NH3 are not discussed. The coordination polyhedra around the cations, including complex cations, and the hydroborate anions are determined and constitute the basis of the structural systematics underlying hydroborates chemistry in various variants of anionic packing. The latter is determined from anion–anion coordination with the help of topology analysis using the program TOPOS [Blatov (2006), IUCr CompComm. Newsl. 7, 4–38]. The Pauling rules for ionic crystals apply only to smaller cations with the observed coordination number within 2–4. For bigger cations, the predictive power of the first Pauling rule is very poor. All non-molecular hydroborate crystal structures can be derived by simple deformation of the close-packed anionic lattices, i.e., cubic close packing (ccp) and hexagonal close packing (hcp), or body-centered cubic (bcc), by filling tetrahedral or octahedral sites. This review on the crystal chemistry of hydroborates is a contribution that should serve as a roadmap for materials engineers to design new materials, synthetic chemists in their search for promising compounds to be prepared, and materials scientists in understanding the properties of novel materials.


2000 ◽  
Vol 64 (6) ◽  
pp. 1069-1075 ◽  
Author(s):  
S. V. Krivovichev ◽  
P. C. Burns

AbstractThe crystal structure of synthetic ‘plumbonacrite’, Pb5O(OH)2(CO3)3, hexagonal, P63cm, a = 9.0921(7), c = 24.923(3)Å, V = 1784.3(3)Å3, Z = 6, has been solved by direct methods and refined to R = 0.049. There are six symmetrically independent Pb2+ positions in the structure, the coordination polyhedra of which are strongly distorted due to the effect of s2 lone-electron pairs on the Pb2+ cations. The Pb(6) position is disordered with a Pb–Pb distance of 1.24 Å . The structure of ‘plumbonacrite’ is built from complex Pb–O layers parallel to the (001) plane similar to those observed in polymorphs of Pb4(OH)2(SO4)(CO3)2. The structure of these layers can be described in terms of Pb–O,OH motifs and CO3 groups. The smallest structural subunit is the oxocentred [OPb4] tetrahedron that shares three of its Pb-Pb edges with three [(OH)Pb3] distorted triangles to form [O(OH)3Pb7] clusters. These clusters are surrounded by CO3 groups, forming more complex clusters. Due to the disorder in the Pb(6) site, the clusters comprising this site are linked with each other via OH(10) groups to give continuous sheets of Pb–O,OH bonds which are parallel to the (001) plane. The [O(OH)3Pb7] clusters in ‘plumbonacrite’ may be important in more complex Pb carbonate oxo/hydroxo complexes that may exist in aqueous environments.


Author(s):  
Radovan Černý ◽  
Pascal Schouwink

The crystal structures of inorganic homoleptic metal borohydrides are analysed with respect to their structural prototypes found amongst metal oxides in the inorganic databases such as Pearson's Crystal Data [Villars & Cenzual (2015). Pearson's Crystal Data. Crystal Structure Database for Inorganic Compounds, Release 2014/2015, ASM International, Materials Park, Ohio, USA]. The coordination polyhedra around the cations and the borohydride anion are determined, and constitute the basis of the structural systematics underlying metal borohydride chemistry in various frameworks and variants of ionic packing, including complex anions and the packing of neutral molecules in the crystal. Underlying nets are determined by topology analysis using the program TOPOS [Blatov (2006). IUCr CompComm. Newsl. 7, 4–38]. It is found that the Pauling rules for ionic crystals apply to all non-molecular borohydride crystal structures, and that the latter can often be derived by simple deformation of the close-packed anionic lattices c.c.p. and h.c.p., by partially removing anions and filling tetrahedral or octahedral sites. The deviation from an ideal close packing is facilitated in metal borohydrides with respect to the oxide due to geometrical and electronic considerations of the BH4 − anion (tetrahedral shape, polarizability). This review on crystal chemistry of borohydrides and their similarity to oxides is a contribution which should serve materials engineers as a roadmap to design new materials, synthetic chemists in their search for promising compounds to be prepared, and materials scientists in understanding the properties of novel materials.


2005 ◽  
Vol 61 (3) ◽  
pp. 239-245 ◽  
Author(s):  
Tonči Balić-Žunić ◽  
Konstantin Mariolacos ◽  
Karen Friese ◽  
Emil Makovicky

Cu3Bi2S3I3 was crystallized during an attempt to synthesize Cu–Pb–Bi sulfosalts with iodine as the transport medium. The crystal structure was solved from a black needle-like crystal on a four-circle diffractometer with a CCD detector. The solution was obtained by direct methods and subsequent difference-Fourier syntheses. S and I atoms are arranged in a systematically distorted cubic eutaxy (close packing). Bi atoms have monocapped trigonal prismatic coordinations, while Cu atoms occupy coordination sites which vary from trigonal planar to distorted tetrahedral. A prominent feature is the distribution of Cu atoms over many closely spaced sites in the structure, the majority of them being only partly occupied, which strengthens the case for mobile Cu atoms during crystal growth at elevated temperatures. In this respect, Cu3Bi2S3I3 represents an extreme example of a statistical distribution of Cu in the structure; a frequently observed property of this element in sulfosalts.


2000 ◽  
Vol 64 (6) ◽  
pp. 1063-1068 ◽  
Author(s):  
S. V. Krivovichev ◽  
P. C. Burns

AbstractThe crystal structure of synthetic shannonite, Pb2O(CO3), orthorhombic, P212121, a = 5.1465(7), b = 9.014(1), c = 9.315(1)Å, V = 432.12(10)Å3, Z = 4, has been solved by direct methods and refined to R = 0.054. There are two symmetrically distinct Pb2+ cations in irregular coordination polyhedra due to the effect of stereoactive s2 lone-electron pairs. The structure can be described as composed of chains of [OPb2] composition running parallel to [100] that are built by corner-sharing of OPb3 oxocentred triangles. The [OPb2] chains are surrounded by CO3 groups to form complex [OPb2](CO3) chains that are linked into a 3-dimensional framework by additional Pb–O bonds. The structure has channels that are parallel to [100] in which the lone-electron pairs of the Pb2+ cations are probably located.


Sign in / Sign up

Export Citation Format

Share Document