hydroxo complexes
Recently Published Documents


TOTAL DOCUMENTS

217
(FIVE YEARS 12)

H-INDEX

33
(FIVE YEARS 3)

Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7151
Author(s):  
Adedamola A. Opalade ◽  
Elizabeth N. Grotemeyer ◽  
Timothy A. Jackson

Manganese lipoxygenase (MnLOX) is an enzyme that converts polyunsaturated fatty acids to alkyl hydroperoxides. In proposed mechanisms for this enzyme, the transfer of a hydrogen atom from a substrate C-H bond to an active-site MnIII-hydroxo center initiates substrate oxidation. In some proposed mechanisms, the active-site MnIII-hydroxo complex is regenerated by the reaction of a MnIII-alkylperoxo intermediate with water by a ligand substitution reaction. In a recent study, we described a pair of MnIII-hydroxo and MnIII-alkylperoxo complexes supported by the same amide-containing pentadentate ligand (6Medpaq). In this present work, we describe the reaction of the MnIII-hydroxo unit in C-H and O-H bond oxidation processes, thus mimicking one of the elementary reactions of the MnLOX enzyme. An analysis of kinetic data shows that the MnIII-hydroxo complex [MnIII(OH)(6Medpaq)]+ oxidizes TEMPOH (2,2′-6,6′-tetramethylpiperidine-1-ol) faster than the majority of previously reported MnIII-hydroxo complexes. Using a combination of cyclic voltammetry and electronic structure computations, we demonstrate that the weak MnIII-N(pyridine) bonds lead to a higher MnIII/II reduction potential, increasing the driving force for substrate oxidation reactions and accounting for the faster reaction rate. In addition, we demonstrate that the MnIII-alkylperoxo complex [MnIII(OOtBu)(6Medpaq)]+ reacts with water to obtain the corresponding MnIII-hydroxo species, thus mimicking the ligand substitution step proposed for MnLOX.


2021 ◽  
Vol 87 (8) ◽  
pp. 99-115
Author(s):  
Artem Mishchenko ◽  
Elena Trunova ◽  
Tamara Makotryk

Mono- and mixed-ligand complexes of La (III) with aliphatic β-ketoesters were synthesized in the solid state. The complexes have the general formulas LаL2OH·H2O (L=meacac, etacac, alacac) and La(meacac)2X·nCH3OH(X = NO3, CH3COO; n = 1, 2). Their composition, structure, and thermal properties were established by chemical and thermal analysis,  IR spectroscopy. It is shown that β-ketoesters are coordinated to the La (III) ion bidentate-cyclically into monoligand hydroxocomp­lexes. Ligand complexes with methylacetoacetate have an oligomeric structure. They consist of cationic fragments [La(meacac)2]+ with bridged connection of the nitrate or acetate anions. The thermal destructions of LaL2OH·H2O (L = meacac, etacac, alacac), La(meacac)2NO3· 2CH3OH and La(meacac)2(CH3COO)·CH3OH were studied for the first time in the helium dynamic atmosphere by TGA-MS in the temperature range of 25–900 °C. Depending on the ligand, dehydratation of the hydroxo-complexes takes place in the 120–180 (meacac), 120–190 (etacac) or 110–160 °C (alacac) temperature range, and the mass loss corresponds with the detachment of one water molecule. Decomposition of mixed-ligand complexes starts with the detachment of methanol in the 60–100 °C range. For La(meacac)2NO3·2CH3OH the decomposition process is attended with oxidation of methanol to carbon dioxide due to reduction of the nitrate-ion to nitrogen dioxide. Further heating to 300–400 °C leads to destruction of organic parts of the complexes attended with the release of low-molecular oxygen-containing organic compounds (aldehydes, ketones, alcohols), carbon dioxide and water. At ~500 °C all the La(III) complexes under study totally decompose, yielding the oxycarbonate La2O2CO3, which was fixed by IR spectroscopy. Under further heating to 850 °С oxycarbonate gradually decomposes to La2O3 liberating CO2.


2021 ◽  
pp. 52-58
Author(s):  
P. A. Kozlov ◽  
A. M. Panshin ◽  
S. A. Yakornov ◽  
D. A. Ivakin

This paper describes a technique developed for processing EAF dusts and recovering zinc. The technique is based on the Waelz process without zinc sublimation and allows to obtain a product suitable for hydrometallurgical processing and clear of lead or halogens in one process stage. It would be feasible to use an alkaline hydrometallurgical process for this product as it enables a selective recovery of zinc while iron remains in the solid residue. A pyrometallurgical process is necessary to remove halogens, increase the solubility of zinc and remove lead. In the alkaline process, the latter transfers to the solution together with zinc. As part of the development procedure, the thermodynamics of lead and iron in alkaline medium was studied. For this, equilibrium diagrams were built in the Eh – рН coordinates. Findings: – zinc can dissolve at рН > 12.7 while forming the following anions: ZnO22– and [Zn(OH)n]2–n. A study that looked at leaching zinc ores confirms that anions of the latter type do form; – lead can dissolve while forming [Pb(ОН)6]2–-type hydroxo complexes at рН > 12.5. When the solution is heated to 80 oС, their solubility can reach 140 g/dm3. In a hot solution hydroxo complexes form orthoplumbite and orthoplumbate ions PbО22–, PbО32– as a result of dehydration; – the low solubility of all iron compounds in alkaline medium and their position in the diagram only defined by the pH range suggest that the leach solutions contain no iron ions of any type. With the temperature raised to 80 oС, the equilibria in the Fe – H2O system remains unchanged in alkaline medium and no significant increase in the solubility of iron compounds is observed. The findings show that selective dissolution of products containing zinc oxides (including EAF dusts after the above mentioned pyrometallurgical process) in alkaline solutions is feasible. The zinc leaching residue was analyzed for chemical and phase composition to find possible applications for it. It is demonstrated that calcium ferrites, aluminates and alumosilicates account for 80% of the residue. This iron-calcium material can be utilized by cement industry.


2021 ◽  
Author(s):  
Kritika Keshari ◽  
Moumita Bera ◽  
Lucía Velasco ◽  
Sandip Munshi ◽  
Geetika Gupta ◽  
...  

One-electron oxidation of an FeIII–OH complex (1) results in the formation of a FeIII–OH ligand radical complex (2). Its reaction with (C6H5)3C˙ results in the formation of (C6H5)3COH, which is a functional mimic of compound II of cytochrome P450.


Author(s):  
A. S. Panasyugin ◽  
L. P. Dolgiy ◽  
I. L. Kulinich ◽  
A. A. Gerasikova ◽  
A. V. Mikishko ◽  
...  

The paper gives a general description of the areas of application of bentonite clays. A number of deposits were evaluated in terms of their use in various technological processes. Analysis of directions of application of bentonite clays in foundry was carried out.Using the methods of X-ray and gas chromatographic analysis, scanning electron microscopy, thermogravimetry and direct adsorption-structural measurements, it is shown that materials obtained from montmorillonite and heteronuclear hydroxo complexes Cr-Cu have greater thermal stability and better sorption characteristics compared to montmorillonite fixed by mononuclear hydroxo complexesUsing montmorillonite modified with heteronuclear hydroxo complexes Cr-Cu with the best adsorption-structural parameters and zeolite NCVM, a laboratory batch of mixed adsorbent catalysts has been developed.This material has been studied in deep vapor oxidation processes of low concentrated organic substances such as acetone, toluene, ethyl acetate, ethanol, butanol and butyl acetate.The conversion rate on the mixed adsorbent catalysts for the studied adsorbates was found to be 94.9–97.7 (average 96.2 %).


Minerals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 578 ◽  
Author(s):  
Andres Ramirez ◽  
Leopoldo Gutierrez ◽  
Dennis Vega-Garcia ◽  
Lorenzo Reyes-Bozo

Copper-molybdenum grades of important mining deposits have progressively decayed, which is associated with high levels of clay minerals which affect froth flotation. The depressing effect of clay minerals on copper sulfides was previously reported but there are no systematic studies on the effect on molybdenite flotation in seawater. The objective of this work was to study the effect of kaolinite on molybdenite flotation in seawater and to evaluate the use of sodium hexametaphosphate (SHMP) as dispersant. The results of this work show that kaolinite depresses molybdenite flotation which is more significant in seawater at pH > 9. All the experimental data validate the hypothesis that kaolinite covers molybdenite, reducing its flotation recovery. The depressing effect of kaolinite on molybdenite flotation in seawater is enhanced by the magnesium and calcium hydroxo complexes at pH > 9, which induce heterocoagulation between kaolinite and molybdenite, thus reducing recovery. The attachment of the positively charged hydroxo complexes of magnesium and calcium to the molybdenite and kaolinite surfaces is diminished by SHMP. This reagent increases the repulsive forces between molybdenite and precipitates and as a result, molybdenite becomes more hydrophobic and recovery increases.


2019 ◽  
Vol 58 (23) ◽  
pp. 15801-15811 ◽  
Author(s):  
Zachary Gordon ◽  
Tabitha J. Miller ◽  
Clare A. Leahy ◽  
Ellen M. Matson ◽  
Mark Burgess ◽  
...  

2019 ◽  
Vol 58 (21) ◽  
pp. 14682-14692 ◽  
Author(s):  
Nataliia S. Kariaka ◽  
Sergey V. Kolotilov ◽  
Paula Gawryszewska ◽  
Ewa Kasprzycka ◽  
Marek Weselski ◽  
...  

2019 ◽  
Vol 86 (2) ◽  
pp. 206-212
Author(s):  
A. M. Mishchenko ◽  
E. K. Trunova ◽  
L. I. Zheleznova ◽  
T. A. Makotryk

2019 ◽  
Vol 141 (16) ◽  
pp. 6639-6650 ◽  
Author(s):  
Michael J. Drummond ◽  
Courtney L. Ford ◽  
Danielle L. Gray ◽  
Codrina V. Popescu ◽  
Alison R. Fout

Sign in / Sign up

Export Citation Format

Share Document