zeolite x
Recently Published Documents


TOTAL DOCUMENTS

450
(FIVE YEARS 71)

H-INDEX

46
(FIVE YEARS 7)

2021 ◽  
Author(s):  
Fatemeh Hassani ◽  
Mahboubeh A. Sharif ◽  
Masoumeh Tabatabaee ◽  
Mahboobeh Mahmoodi

Abstract Complexes of Co (II) and Ni (II) with dipicolinic acid, 2,6-pyridine dicarboxylic acid (PydcH2) have been synthesized in the NaX (zeolite-X) nanopores. The formation of zeolite X encapsulated Co(II) and Ni(II) complexes ([M(pydcH)2]-NaX, where M = Co(II) and Ni(II]) were confirmed using spectroscopic methods of FT-IR, elemental analysis, XRD, FE-SEM, and TEM. It was affirmed that the encapsulation of complexes in NaX pores was performed without changes in the structure and shape of the zeolite. The oxidative degradation reaction of atenolol with hydrogen peroxide as an oxidant was performed in the presence of synthesized [M(pydcH)2]-NaX nanocomposites to study their catalytic activity. Therefore, oxidation of atenolol was performed under different conditions of catalyst, temperature, and time. Under optimal conditions, catalysts [Co(pydcH)2]-NaX and [Ni(pydcH)2]-NaX showed 82.3% and 71.1% activity of atenolol oxidation, respectively. These catalysts were stable after recovery and were used three more times. The results showed that these catalysts were reusable and had a reduction in the catalytic activity of less than ten percent.


Fuel ◽  
2021 ◽  
Vol 305 ◽  
pp. 121432
Author(s):  
M.A.H Aziz ◽  
A.A Jalil ◽  
T.J Siang ◽  
I. Hussain ◽  
A.F.A Rahman ◽  
...  

Author(s):  
Kimiya Nematolahi ◽  
Ehsan Salehi ◽  
Abtin Ebadi Amooghin ◽  
Hamidreza Sanaeepur

2021 ◽  
Vol 7 (1) ◽  
pp. 28-36
Author(s):  
Quynh Luong Pham ◽  
Hoang Lan Nguyen ◽  
Van Chinh Nguyen ◽  
Huu Anh Vuong ◽  
Cao Nguyen Luu ◽  
...  

The development of cesium selective adsorbent is urgent subject for the decontamination of intermediate and high level water from nuclear facilities especially in nuclear accidents. For the selective adsorption and stable immobilization of radioactive cesium, K-Ni- hexacyanoferrate (II) loaded zeolite (FCzeolite) (synthesized zeolite of Hanoi University of Science and Technology) were prepared by impregnation/precipitation method. The ion exchange equilibrium of Cs+ for composites FC-zeolite was attained within 5 h and estimated to be above 97% in Cs+ 100mg/l solution at pH: 4-10. Ion exchange capacity of Cs+ ions (Qmax) for FC-zeoliteX was reached 158.7 and 98.0 mg/g in pure water and sea water respectively.Those values for FC-zeolite A was 103.1 and 63.7 mg/g. Decontamination factor (DF) of FC-zeolite X for 134Cs was 149.7 và 107.5 in pure water and sea water respectively. Initial radioactivity of 134Cs ion solution infect to decontamination factor. KNiFC-zeolite X after uptaked Cs (CsFC- zeolite X) was solidificated in optimal experimental conditions: Mixing CsFC-zeolite X with additive of Na2B4O7 (5%), temperature calcined 900oC for 2h in air. Solid forms was determined some of parameters: Cs immobilization, mechanical stability, volume reduction after calcination (%) and leaching rate of Cs+ ions in solution.


Author(s):  
Eman Hashim Khader ◽  
Thamer Jassim Mohammed ◽  
Nourollah Mirghaffari ◽  
Ali Dawood Salman ◽  
Tatjána Juzsakova ◽  
...  

AbstractThis paper studied the adsorption of chemical oxygen demand (COD), oil and turbidity of the produced water (PW) which accompanies the production and reconnaissance of oil after treating utilizing powdered activated carbon (PAC), clinoptilolite natural zeolite (CNZ) and synthetic zeolite type X (XSZ). Moreover, the paper deals with the comparison of pollutant removal over different adsorbents. Adsorption was executed in a batch adsorption system. The effects of adsorbent dosage, time, pH, oil concentration and temperature were studied in order to find the best operating conditions. The adsorption isotherm models of Langmuir, Freundlich and Temkin were investigated. Using pseudo-first-order and pseudo-second-order kinetic models, the kinetics of oil sorption and the shift in COD content on PAC and CNZ were investigated. At a PAC adsorbent dose of 0.25 g/100 mL, maximum oil removal efficiencies (99.57, 95.87 and 99.84 percent), COD and total petroleum hydrocarbon (TPH) were identified. Moreover, when zeolite X was used at a concentration of 0.25 g/100 mL, the highest turbidity removal efficiency (99.97%) was achieved. It is not dissimilar to what you would get with PAC (99.65 percent). In comparison with zeolites, the findings showed that adsorption over PAC is the most powerful method for removing organic contaminants from PW. In addition, recycling of the consumed adsorbents was carried out in this study to see whether the adsorbents could be reused. Chemical and thermal treatment will effectively regenerate and reuse powdered activated carbon and zeolites that have been eaten. Graphic abstract


2021 ◽  
Vol 13 (8) ◽  
pp. 1512-1520
Author(s):  
MiaoSen Zhang ◽  
SiYang Wang ◽  
Zheng Hu ◽  
RunZe Zhang ◽  
XiaoLi Wang

China is a big coal producing country, there are a lot of coal gangue piled up. The zeolite X was synthesized by alkali melting and hydrothermal method based on the coal gangue from Chifeng city, Inner Mongolia. The obtained zeolite X sample is characterized by X-ray diffraction, SEM, EDS spectrum and IR which showed the X zeolite is an octahedral structure with complete crystal shape and uniform grain size. The results of BET showed the specific surface area of zeolite X is 354.8 m2/g and the minimum pore size is 3.8 nm which indicated that the zeolite X belongs to mesoporous materials. The adsorption conditions of the zeolite X adsorbent on copper ions were optimized. A solution containing Cu2+ ions with an initial concentration of 300 mg/L was added to the zeolite X with a dosage of 0.1 g and the initial pH value of the solution was adjusted to 6. Then the solution was oscillated for 120 min at 225 r/min. The maximum adsorption capacity and removal rate were 148.6 mg/g and 99.1%, respectively. The adsorption mechanism was discussed by adsorption kinetics and thermodynamics. The quasi-second order kinetic equation can be well used to describe the adsorption kinetics of zeolite X to Cu2+ (R2 = 0.9994) and Langmuir can well describe the adsorption behavior of zeolite X to Cu2+ (R2 = 0.9995) which showed the adsorption is a monolayer of chemical adsorption. The adsorption capacity of zeolite X to Cu2+ is about 4.0 times that of coal gangue, indicating that the zeolite X has good adsorption capacity.


2021 ◽  
Author(s):  
Yong Ai ◽  
Na Yin ◽  
Yanquan Ouyang ◽  
Yuanxin Xu ◽  
Pengfei Yang

Abstract In order to make full use of waste as raw materials to prepare low-cost zeolite, develop green chemical industry and achieve the purpose of treating waste with waste. High-purity zeolite X was prepared by the alkaline fusion hydrothermal method (AFH) using waste basalt powder as raw material, and was used as an adsorbent to investigate the adsorption performance for uranium-containing wastewater. The structure, morphology, specific surface area, chemical composition, chemical bonds, characteristic functional groups and chemical states of surface elements of the samples were characterized by XRD, SEM, BET, EDS, FT-IR and XPS. zeolite X with high crystallinity and rich hydroxyl/carboxyl groups was successfully synthesized by the AFH method, and its specific surface area was as high as 623.4 m2·g-1. When the adsorption time (t) is 720 min, the adsorption temperature (T) is 30 ℃, the initial uranium (VI) concentration is (C0) 35 mg/L, pH is 6.0, and the adsorbent dosage (m) is 5/35 mg/mL, the equilibriu adsorption capacity of zeolite X for uranyl ions is 228.4 mg·g-1. Thermodynamic results show that the adsorption process of uranyl ions by zeolite X is spontaneous and exothermic. Freundlich isotherms and quasi-second-order models are suitable to describe the adsorption process of uranyl ions by zeolite X. XPS analysis results show that -OH and -COOH play an important role in the adsorption process. At the same time, there is ion exchange between UO22+ and zeolite during the adsorption process.


Sign in / Sign up

Export Citation Format

Share Document