crystal structure database
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 12)

H-INDEX

18
(FIVE YEARS 2)

2021 ◽  
Vol 2 (1) ◽  
pp. 39-47
Author(s):  
M Farid Khoirul Alim ◽  
Hartatiek Hartatiek ◽  
Chusnana Insjaf Yogihati

Perkembangan Ilmu Pengetahuan dan Teknologi (IPTEK) akhir-akhir ini mendorong banyaknya inovasi dalam dunia medis terutama penggunaan biomaterial sebagai implan pengganti tulang dan gigi, salah satunya bahan tersebut adalah biokeramik komposit CaO-TiO2. Bahan biokeramik komposit CaO-TiO2 dapat digunakan untuk memperbaiki bagian tubuh yang rusak terutama sebagai implan gigi, penyambung tulang, struktur penahan katup jantung, dan pengganti tulang tengkorak. Paduan antara CaO-TiO2 memiliki beberapa keuntungan diantaranya memiliki biokompatibilitas yang baik, dapat tumbuh serta berkembang bersama-sama dengan tulang asli serta memiliki ketahanan mekanik yang baik. Berdasarkan paparan di atas, tujuan dari penelitian ini adalah mengetahui pengaruh lama maturasi pada biokeramik komposit CaO-TiO2 dengan metode kopresipitasi terhadap kristalinitas, mikrostruktur, dan kekerasan. Pada penelitian ini bahan dasar yang digunakan adalah CaO yang berasal dari batuan kapur alam yang diambil dari pantai Balekambang Kabupaten Malang dan TiO2 dengan kemurnian 99 persen. Sampel dilarutkan dalam aquades dan distirer selama 15 jam pada suhu 70 derajat celcius. Lama maturasi divariasi mulai dari 12, 24, 36, 48, dan 60 jam, dianneling pada suhu 100 derajat celcius selama 24 jam dan disintering selama 4 jam pada suhu 1100 derajat celcius. Sampel dikarakterisasi ukuran kristal, mikrostruktur, dan kekerasan, dengan menggunakan XRD, SEM, dan Micro Vickers Hardness. Hasil analisis CaO-TiO2 menunjukkan kecocokan dan keberhasilan sintesis dengan model pembanding CaO-TiO2 dari Inorganic Crystal Structure Database (ICSD) dengan nilai score diatas 50. Berdasarkan perhitungan teoritik yang dilakukan dengan menentukan nilai FWHM (Full Widht at Half Maximum) dari pola difraksi sampel yang kemudian digunakan pada formula scherrer, diperoleh hasil peningkatan ukuran kristal yang bervariasi terhadap lama maturasi komposit CaO-TiO2 dengan besar antara 45,06 nm-70,85 nm. Dengan meningkatnya ukuran kristal terhadap lama maturasi maka akan disertai oleh peningkatan ukuran butir, sehingga semakin sedikit jumlah pori-pori yang terbentuk pada bahan yang ditunjukan oleh menurunnya nilai luas fraksi pori sebesar 4,97 persen pada lama maturasi 12 jam menjadi 4,79 persen pada lama maturasi 60 jam. Dengan semakin kecilnya nilai fraksi total pori maka semakin besar kekerasan dari bahan tersebut, hal ini ditunjukan dengan nilai kekerasan tertinggi diperoleh pada lama maturasi 60 jam sebesar 497,2 MPa.


Author(s):  
Ryoji Suzuki ◽  
Yuta Watanabe ◽  
Hisanori Yamane ◽  
Mamoru Kitaura ◽  
Kento Uchida ◽  
...  

The title silver carbonate iodide, Ag10(CO3)3I4, decasilver(I) tris(carbonate) tetraiodide, was recently reported as a precursor of the new superionic conductor Ag17(CO3)3I11. Ag10(CO3)3I4, was prepared by heating a stoichiometric powder mixture of AgI and Ag2CO3 at 430 K. A single-crystal suitable for X-ray diffraction analysis was obtained by slow cooling of a melt with an AgI-rich composition down from 453 K. Ag10(CO3)3I4 exhibits a layered crystal structure packed along [10\overline{1}], in which Ag atoms are intercalated between the layers of hexagonally close-packed I atoms, and CO3 groups. Up to now, Cs3Pb2(CO3)3I is the only other compound containing carbonate groups and iodide ions registered in the Inorganic Crystal Structure Database.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Leen N. Kalash ◽  
Jason C. Cole ◽  
Royston C. B. Copley ◽  
Colin M. Edge ◽  
Alexandru A. Moldovan ◽  
...  

Analysis of the molecular and structural features of the GSK crystal structure database and Cambridge Structural Database leads to improved reliability in hydrogen bond propensity models for pharmaceutical polymorphs.


Chemistry ◽  
2020 ◽  
Vol 2 (4) ◽  
pp. 805-826 ◽  
Author(s):  
Radovan Černý ◽  
Matteo Brighi ◽  
Fabrizio Murgia

The crystal structures of inorganic hydroborates (salts and coordination compounds with anions containing hydrogen bonded to boron) except for the simplest anion, borohydride BH4−, are analyzed regarding their structural prototypes found in the inorganic databases such as Pearson’s Crystal Data [Villars and Cenzual (2015), Pearson’s Crystal Data. Crystal Structure Database for Inorganic Compounds, Release 2019/2020, ASM International, Materials Park, Ohio, USA]. Only the compounds with hydroborate as the only type of anion are reviewed, although including compounds gathering more than one different hydroborate (mixed anion). Carbaborane anions and partly halogenated hydroborates are included. Hydroborates containing anions other than hydroborate or neutral molecules such as NH3 are not discussed. The coordination polyhedra around the cations, including complex cations, and the hydroborate anions are determined and constitute the basis of the structural systematics underlying hydroborates chemistry in various variants of anionic packing. The latter is determined from anion–anion coordination with the help of topology analysis using the program TOPOS [Blatov (2006), IUCr CompComm. Newsl. 7, 4–38]. The Pauling rules for ionic crystals apply only to smaller cations with the observed coordination number within 2–4. For bigger cations, the predictive power of the first Pauling rule is very poor. All non-molecular hydroborate crystal structures can be derived by simple deformation of the close-packed anionic lattices, i.e., cubic close packing (ccp) and hexagonal close packing (hcp), or body-centered cubic (bcc), by filling tetrahedral or octahedral sites. This review on the crystal chemistry of hydroborates is a contribution that should serve as a roadmap for materials engineers to design new materials, synthetic chemists in their search for promising compounds to be prepared, and materials scientists in understanding the properties of novel materials.


2020 ◽  
Author(s):  
Anjie Cheng ◽  
Chenyang Lyu ◽  
Tianyi Shi ◽  
Ziheng Wang ◽  
Robert Palgrave

<p>A geometric analysis of the cubic A<sub>2</sub>BX<sub>6</sub> structure commonly formed by metal halides is presented. Using the ‘hard sphere’ approximation, where the ions are represented by spheres of a fixed radius, we derive four limiting models that each constrain the distances between constituent ions in different ways. We compare the lattice parameters predicted by these four models with experimental data from the Inorganic Crystal Structure Database (ICSD). For the fluorides, the maintenance of the AX bond length at the sum of the A and X radii gives the best approximation of the lattice parameter, leading to structures with widely separated BX<sub>6</sub> octahedra. For the heavier halides, a balance between forming an A site cavity of the correct size, and maintaining suitable anion-anion distances determines the lattice parameter. It is found that in many A<sub>2</sub>BX<sub>6</sub> compounds of heavier halides, the neighbouring octahedra show very significant anion-anion overlap, meaning that the commonly used description of these materials of having isolated BX<sub>6</sub> octahedra is misleading. We use the geometric models to derive formability criteria for vacancy ordered double perovskites. </p>


2020 ◽  
Author(s):  
Anjie Cheng ◽  
Chenyang Lyu ◽  
Tianyi Shi ◽  
Ziheng Wang ◽  
Robert Palgrave

<p>A geometric analysis of the cubic A<sub>2</sub>BX<sub>6</sub> structure commonly formed by metal halides is presented. Using the ‘hard sphere’ approximation, where the ions are represented by spheres of a fixed radius, we derive four limiting models that each constrain the distances between constituent ions in different ways. We compare the lattice parameters predicted by these four models with experimental data from the Inorganic Crystal Structure Database (ICSD). For the fluorides, the maintenance of the AX bond length at the sum of the A and X radii gives the best approximation of the lattice parameter, leading to structures with widely separated BX<sub>6</sub> octahedra. For the heavier halides, a balance between forming an A site cavity of the correct size, and maintaining suitable anion-anion distances determines the lattice parameter. It is found that in many A<sub>2</sub>BX<sub>6</sub> compounds of heavier halides, the neighbouring octahedra show very significant anion-anion overlap, meaning that the commonly used description of these materials of having isolated BX<sub>6</sub> octahedra is misleading. We use the geometric models to derive formability criteria for vacancy ordered double perovskites. </p>


2020 ◽  
Vol 22 (25) ◽  
pp. 13975-13980
Author(s):  
Renhai Wang ◽  
Shunqing Wu ◽  
Feng Zhang ◽  
Xin Zhao ◽  
Zijing Lin ◽  
...  

We build a crystal structure database for NaFePO4 by replace Li with Na in LiFePO4, and stabilize the olivine type of NaFePO4 with Li substitutions.


2019 ◽  
Vol 52 (5) ◽  
pp. 918-925 ◽  
Author(s):  
D. Zagorac ◽  
H. Müller ◽  
S. Ruehl ◽  
J. Zagorac ◽  
S. Rehme

The Inorganic Crystal Structure Database (ICSD) is the world's largest database of fully evaluated and published crystal structure data, mostly obtained from experimental results. However, the purely experimental approach is no longer the only route to discover new compounds and structures. In the past few decades, numerous computational methods for simulating and predicting structures of inorganic solids have emerged, creating large numbers of theoretical crystal data. In order to take account of these new developments the scope of the ICSD was extended in 2017 to include theoretical structures which are published in peer-reviewed journals. Each theoretical structure has been carefully evaluated, and the resulting CIF has been extended and standardized. Furthermore, a first classification of theoretical data in the ICSD is presented, including additional categories used for comparison of experimental and theoretical information.


Sign in / Sign up

Export Citation Format

Share Document