Speciation of adsorbed arsenic(V) on red mud using a sequential extraction procedure

2005 ◽  
Vol 69 (5) ◽  
pp. 591-600 ◽  
Author(s):  
D. A. Rubinos ◽  
M. Arias ◽  
F. Díaz-Fierros ◽  
M. T. Barral

AbstractThe distribution of sorbed arsenic(V) among different geochemical fractions for arsenic(V)-loaded red mud, an oxide-rich residue from bauxite refining that has been proposed as an adsorbent for arsenic, was studied as a function of sorbed arsenic(V) concentration using a sequential extraction procedure. The release of previously sorbed arsenic(V) was also studied as a function of pH and arsenic(V) concentration. Most sorbed arsenic(V) (0.39–7.86 mmol kg–1) was associated with amorphous and crystalline Al and Fe oxides (24.1–43.8% and 24.7–59.0% of total sorbed arsenic, respectively). Exchangeable arsenic was the smallest fraction (0.4–5.2% of total sorbed arsenic). The distribution of sorbed arsenic(V) was related to the arsenic surface coverage. For arsenic surface coverages >∼30% the percentage of arsenic(V) associated with the amorphous Al oxide fraction increased and that associated with the crystalline oxide fraction decreased. The arsenic(V) exchangeable fraction increased from 1.4 to 756 μmol kg–1 as surface coverage increased from 388 to 7855 μmol kg–1. The release of sorbed arsenic(V) from red mud was greater at alkaline pH values (maximum release of ∼33% of previously sorbed arsenic at pH = 12), but for high arsenic(V) initial concentration (0.2 mM arsenic) considerable amounts of arsenic (6.5% of previously sorbed arsenic) were released at pH 4, in accordance with the dissolution of amorphous Al oxides in the red mud. The results obtained suggest a greater mobility of sorbed arsenic(V) as its surface concentration approaches saturation.

1985 ◽  
Vol 17 (4-5) ◽  
pp. 587-598 ◽  
Author(s):  
R. J. Oake ◽  
C. S. Booker ◽  
R. D. Davis

Metals (Cd, Cr, Cu, Ni, Pb and Zn) have been fractionated in representative sewage sludges (primary, secondary, digested) by a sequential extraction procedure using KNO3 1M (removes the ‘exchangeable' fraction), KF 0.5M (‘sorbed'), Na4P2O7 0.1M (‘organic'), Na2EDTA 0.1M (‘carbonate') and HNO3 6M (‘sulphide'). Major differences according to sludge type were not seen. Cd occurred mainly in the ‘carbonate' fraction and 38–62% of Cr was in the ‘organic' fraction. 43–70% Cu was in the sulphide fraction whilst >40% of Ni was extracted in the ‘exchangeable/sorbed' fractions. Pb was found predominantly in the ‘organic' and ‘carbonate' fractions and Zn in the ‘organic' fraction. The complete extraction procedure removed 54–100% of the total metals content of the sludges. Changes in fractionation caused by drying, storage and time of extraction are reported. The results form the first part of a detailed investigation into the chemistry of metals in sewage sludge.


MethodsX ◽  
2020 ◽  
Vol 7 ◽  
pp. 100888
Author(s):  
Margit H. Simon ◽  
Daniel P. Babin ◽  
Steven L. Goldstein ◽  
Merry Yue Cai ◽  
Tanzhuo Liu ◽  
...  

2019 ◽  
Vol 25 (2) ◽  
pp. 169-178 ◽  
Author(s):  
Dimitrios Alexakis ◽  
Dimitra Gamvroula ◽  
Eleni Theofili

ABSTRACT Total contents of 36 potentially toxic elements are summarized for agricultural topsoil (n = 12; soil depth = 0–20 cm), subsoil (n = 12; soil depth = 20–40 cm), and representative rock samples collected from a Mediterranean site (Megara Plain, Greece). The five-stage sequential extraction procedure for the geochemical partitioning of cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), manganese (Mn), and nickel (Ni), proposed by Tessier, was applied to topsoil and subsoil collected from the study area. Soil Cd was highly associated with exchangeable fraction, illustrating high bioavailability of this element. The order of mobility of the elements was as follows: Cd > Cu > Co > Zn > Ni > Cr > Mn. Results from sequential extraction experiments illustrated that the bioavailability of Cu, Co, and Zn is moderate, while Ni, Cr, and Mn presented low bioavailability, indicating that these elements could pose a limited threat to the quality of crops. Cadmium is the chief contamination controlling factor posing moderate potential ecological risk. The contamination sources of the examined elements are discussed.


2011 ◽  
Vol 57 (4) ◽  
pp. 500-507 ◽  
Author(s):  
Qing-xia Dai ◽  
Noriharu Ae ◽  
Takeshi Suzuki ◽  
Mani Rajkumar ◽  
Shoko Fukunaga ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document