Gem amphiboles from Mogok, Myanmar: crystal-structure refinement, infrared spectroscopy and short-range order–disorder in gem pargasite and fluoro-pargasite

2018 ◽  
Vol 83 (03) ◽  
pp. 361-371 ◽  
Author(s):  
Maxwell C. Day ◽  
Frank C. Hawthorne ◽  
Umberto Susta ◽  
Giancarlo Della Ventura ◽  
George E. Harlow

AbstractThe crystal structures of six gem-quality pargasites and fluoro-pargasites from Mogok, Myanmar, space group C2/m, Z = 2, have been refined to R1 indices of 2.20–2.90% using MoKα X-radiation. The unit formulae were calculated from the results of electron-microprobe analysis, and were used with the refined site-scattering values and the observed mean bond lengths to assign site populations. TAl occurs at both the T(1) and T(2) sites but is strongly ordered at T(1). [6]Al is partly disordered over the M(2) and M(3) sites but does not occur at the M(1) site. ANa is split between the A(2) and A(m) sites and K occurs at the A(m) site. The infrared spectra in the principal OH-stretching region were measured and the fine structure was fit to component bands. The component bands were assigned to short-range ion arrangements over the configuration symbol M(1)M(1)M(3)–O(3)–A–O(3):T(1)T(1) using the refined site-populations and the expected frequencies from previously assigned spectra in more simple amphibole compositions, and correspond to the local arrangements: (1) MgMgMg–OH–Na–OH:SiAl; (2) MgMgMg–OH–Na–F:SiAl; (3) MgMgAl–OH–Na–OH:SiAl and (4) MgMgAl–OH–Na–F:SiAl.

2018 ◽  
Vol 56 (6) ◽  
pp. 939-950
Author(s):  
Maxwell C. Day ◽  
Frank C. Hawthorne ◽  
Umberto Susta ◽  
Giancarlo Della Ventura ◽  
George E. Harlow

2015 ◽  
Vol 79 (2) ◽  
pp. 253-260 ◽  
Author(s):  
Roberta Oberti ◽  
Massimo Boiocchi ◽  
Frank C. Hawthorne ◽  
Neil A. Ball ◽  
George E. Harlow

AbstractMagnesio-arfvedsonite, theCFe3+-dominant analogue of eckermannite, has been found in a sample of “szechenyite” in the mineral collection of the American Museum of Natural History (AMNH H35024). It comes from the northern part of the Jade Mine Tract near Hpakan, Kachin State, Myanmar. Associated minerals are kosmochlor–jadeite solid-solution pyroxene and clinochlore. The ideal formula of magnesio-arfvedsonite isANaBNa2C(Mg4Fe3+)TSi8O22W(OH)2, and the empirical formula derived from electron microprobe analysis and single-crystal structure refinement for the sample of this work isA(Na0.96K0.04)Σ=1.00B(Na1.57Ca0.40Fe0.022+Mn0.01)Σ=2.00C(Mg4.26Fe0.192+Fe0.413+Al0.11Ti0.034+)Σ=5.00T(Si7.99Al0.01)Σ=8.00O22W[F0.02(OH)1.98]Σ=2.00. The unit-cell dimensions area= 9.867(1),b= 17.928(2),c= 5.284(1) Å, β = 103.80(2)°,V= 907.7 (2) Å3,Z= 2. Magnesio-arfvedsonite is biaxial (–), with α = 1.624, β = 1.636, γ = 1.637, all ± 0.002 and 2Vobs= 36(1)°, 2Vcalc= 32°. The ten strongest reflections in the X-ray powder pattern [dvalues (in Å),I, (hkl)] are: 2.708, 100, (151); 3.399, 68, (131); 3.144, 63, (310); 2.526, 60, (202); 8.451, 46, (110); 3.273, 39, (240); 2.167, 37, (261); 2.582, 34, (061); 2.970, 34, (221); 2.326, 33, [(251) (421)].


2003 ◽  
Vol 67 (4) ◽  
pp. 769-782 ◽  
Author(s):  
R. Oberti ◽  
M. Boiocchi ◽  
D. C. Smith

AbstractFluoronyböite, ideally NaNa2(Al2Mg3)(Si7Al)O22F2, has been found in the Jianchang eclogite pod, Su-Lu coesite-eclogite province, China. It has been approved as a new mineral by the IMA. Single-crystal structure refinement and electron microprobe analysis were used for characterization: C2/m, with a = 9.666(4), b = 17.799(6), c = 5.311(2) Å, β = 104.10(3)º, V = 886.2(8) Å3, Z = 2, formula: A(Na0.78K0.06)Σ0.84B(Na1.53Ca0.47)Σ2.00C(Fe2+0.89Mg2.55Mn0.01Zn0.01Fe3+0.32Al1.21Ti0.01)Σ5.00T(Si7.14Al0.86)Σ8.00O22X(OH0.84F1.16)Σ2.00.Fluoronyböite formed during UHPM conditions, and is preserved in the retrograded kyanite-bearing eclogite sample DJ102 together with clinopyroxene (Jd70Ae20Di10), garnet (Alm60Prp21Grs17Sps02), and rutile. Lower-pressure minerals are also present (fluoro-alumino-magnesiotaramite, apatite, paragonite), and symplectitic rims were also developed around clinopyroxene crystals. Cation ordering and the structural and physical properties of fluoronyböite are reported and discussed with reference to those of F-free nyböite from the type locality at Nyböin Norway, for which some as yet unpublished mineral data are also reported. Relations between composition and petrogenetic conditions of these rare high-pressure amphiboles are discussed.


2018 ◽  
Vol 82 (6) ◽  
pp. 1253-1259
Author(s):  
Roberta Oberti ◽  
Massimo Boiocchi ◽  
Frank C. Hawthorne ◽  
Marco E. Ciriotti

ABSTRACTMagnesio-hornblende (IMA2017-059) has been characterized in a specimen collected in the sand dunes of Lüderitz, Karas Region, Namibia. The empirical formula derived from electron microprobe analysis and single-crystal structure refinement is A(□0.73Na0.22K0.05)Σ1.00B(Ca1.79Fe2+0.10Mg0.04Mn2+0.03Na0.04)Σ2.00C(Mg3.48Fe2+0.97Al0.28Fe3+0.23Cr3+0.01Ti0.03)Σ5.00T(Si7.18Al0.82)Σ8.00O22W[(OH)1.93F0.05Cl0.02]Σ2.00. Magnesio-hornblende is biaxial (–), with α = 1.640(2), β = 1.654(2), γ = 1.666(2) (measured with gel-filtered Na light, λ = 589.9 nm), 2V (meas.) = 82(1)° and 2V (calc.) = 84.9°. The unit-cell parameters are a = 9.8308(7), b = 18.0659(11), c = 5.2968(4) Å, β = 104.771(6)° and V = 909.64 (11) Å3 with Z = 2 and space group C2/m. The strongest eight reflections in the X-ray powder pattern [d values (in Å), I, (hkl)] are: 2.709, 100, (151); 8.412, 74, (110); 3.121, 73, (310); 2.541, 58, ($\bar{2}$02); 3.386, 49, (131); 2.596, 45, (061); 2.338, 41, ($\bar{3}$51); and 2.164, 39, (261).


2016 ◽  
Vol 80 (7) ◽  
pp. 1233-1242 ◽  
Author(s):  
Roberta Oberti ◽  
Massimo Boiocchi ◽  
Frank C. Hawthorne ◽  
Neil A. Ball ◽  
Fernando Cámara ◽  
...  

AbstractFerro-ferri-hornblende is a new member of the amphibole supergroup (IMA-CNMNC 2015-054). It has been found in a rock specimen from the historical collection of Leandro De Magistris, which was collected at the Traversella mine (Val Chiusella, Ivrea, Piemonte, Italy). The specimen was catalogued as ‘speziaite', and contains a wide range of amphibole compositions from tremolite/actinolite to magnesio-hastingsite. The end-member formula of ferro-ferri-hornblende is A□BCa2c(Fe+Fe3+)T(Si7Al) O22W(OH)2 , which requires SiO2 43.41, Al2O3 5.26, FeO 29.66, Fe2O3 8.24 CaO 11.57, H2O 1.86, total 100.00 wt.%. The empirical formula derived from electron microprobe analysis and single-crystal structure refinement for the holotype crystal is A(Na0.10K0.13) Σ=0.23B(Ca 1.93Na0.07)Σ=2.00C(Mg1.16Fe2+3.21Mn0.O6Fe3+0.45 Al0.12Ti 0.01)Σ=5.01T(Si7.26Al0. 74)Σ=8.00 O22W(OH1.89F0.01C10.10)Σ=2.00- Ferro-ferri-hornblende is biaxial (-), with α = 1.697(2), P = 1 .722(5), γ = 1.726(5) and 2V (meas.) = 35.7(1.4)°, 2V (calc.) = 43.1°. The unit-cell parameters are a = 9.9307(5), b = 18.2232(10), c = 5.3190(3) Å, β = 104.857(1)°, V= 930.40 (9) Å3, Z= 2, space group C2/m. The a:b:c ratio is 0.545:1:0.292. The strongest eight reflections in the powder X-ray pattern [d values (in Å), I, (hkl)] are: 8.493, 100, (110); 2.728, 69, (151); 3.151, 47, (310); 2.555, 37, (); 2.615, 32, (061); 2.359, 28, (); 3.406, 26, (131); 2.180, 25, (261). Type material is deposited in the collections of the Museo di Mineralogia, Dipartimento di Scienze della Terra e dell'Ambiente, Università di Pavia, under the catalogue number 2015-01. Sample M/U15285 from the historical collection of Luigi Colomba, presently at the Museo Regionale di Scienze Naturali di Torino, was also checked, and the presence of ferro-ferri-hornblende was confirmed.


2019 ◽  
Vol 83 (4) ◽  
pp. 587-593
Author(s):  
Roberta Oberti ◽  
Massimo Boiocchi ◽  
Frank C. Hawthorne ◽  
Giancarlo Della Ventura ◽  
Gunnar Färber

AbstractPotassic-jeanlouisite, ideally K(NaCa)(Mg4Ti)Si8O22O2, is the first characterised species of oxo amphibole related to the sodium–calcium group, and derives from potassic richterite via the coupled exchange CMg–1W${\rm OH}_{{\rm \ndash 2}}^{\ndash}{} ^{\rm C}{\rm Ti}_1^{{\rm 4 +}} {} ^{\rm W}\!{\rm O}_2^{2\ndash} $. The mineral and the mineral name were approved by the International Mineralogical Association Commission on New Minerals, Nomenclature and Classification, IMA2018-050. Potassic-jeanlouisite was found in a specimen of leucite which is found in the lava layers, collected in the active gravel quarry on Zirkle Mesa, Leucite Hills, Wyoming, USA. It occurs as pale yellow to colourless acicular crystals in small vugs. The empirical formula derived from electron microprobe analysis and single-crystal structure refinement is: A(K0.84Na0.16)Σ1.00B(Ca0.93Na1.02Mg0.04${\rm Mn}_{{\rm 0}{\rm. 01}}^{2 +} $)Σ2.00C(Mg3.85${\rm Fe}_{{\rm 0}{\rm. 16}}^{2 +} $Ni0.01${\rm Fe}_{{\rm 0}{\rm. 33}}^{3 +} {\rm V}_{{\rm 0}{\rm. 01}}^{3 +} $Ti0.65)Σ5.01T(Si7.76Al0.09Ti0.15)Σ8.00O22W[O1.53F0.47]Σ2.00. The holotype crystal is biaxial (–), with α = 1.674(2), β = 1.688(2), γ = 1.698(2), 2Vmeas. = 79(1)° and 2Vcalc. = 79.8°. The unit-cell parameters are a = 9.9372(10), b = 18.010(2), c = 5.2808(5) Å, β = 104.955(2)°, V = 913.1(2) Å3, Z = 2 and space group C2/m. The strongest eight reflections in the powder X-ray pattern [d values (in Å) (I) (hkl)] are: 2.703 (100) (151); 3.380 (87) (131); 2.541 (80) ($\bar 2$02); 3.151 (70) (310); 3.284 (68) (240); 8.472 (59) (110); 2.587 (52) (061); 2.945 (50) (221,$\bar 1$51).


2018 ◽  
Vol 82 (1) ◽  
pp. 189-198
Author(s):  
Roberta Oberti ◽  
Massimo Boiocchi ◽  
Frank C. Hawthorne ◽  
Marco E. Ciriotti ◽  
Olav Revheim ◽  
...  

ABSTRACTClino-suenoite, ideally □${\rm Mn}_{2}^{2 +} $Mg5Si8O22(OH)2 is a new amphibole of the magnesium-iron-manganese subgroup of the amphibole supergroup. The type specimen was found at the Lower Scerscen Glacier, Valmalenco, Sondrio, Italy, where it occurs in Mn-rich quartzite erratics containing braunite, rhodonite, spessartine, carbonates and various accessory minerals. The empirical formula derived from electron microprobe analysis and single-crystal structure refinement is: ANa0.04B(${\rm Mn}_{1.58}^{2 +} $Ca0.26Na0.16)Σ2.00C(Mg4.21${\rm Mn}_{0. 61}^{2 +} {\rm Fe}_{0.04}^{2 +} $Zn0.01Ni0.01${\rm Fe}_{0.08}^{3 +} $Al0.04)Σ5.00TSi8.00O22W[(OH1.94F0.06)]Σ=2.00. Clino-suenoite is biaxial (+), with α = 1.632(2), β = 1.644(2), γ = 1.664(2) and 2Vmeas. = 78(2)° and 2Vcalc. = 76.3°. The unit-cell parameters in the C2/m space group are a = 9.6128(11), b = 18.073(2), c = 5.3073(6) Å, β = 102.825(2)° and V = 899.1(2) Å3 with Z = 2. The strongest ten reflections in the powder X-ray diffraction pattern [d (in Å), I, (hkl)] are: 2.728, 100, (151); 2.513, 77, ($\bar 2$02); 3.079, 62, (310); 8.321, 60, (110); 3.421, 54, (131); 2.603, 42, (061); 2.175, 42, (261); 3.253, 41, (240); 2.969, 40, (221); 9.036, 40, (020).


Sign in / Sign up

Export Citation Format

Share Document