ABC transporter inhibitors that are substrates enhance lentiviral vector transduction into primitive hematopoietic progenitor cells

Blood ◽  
2004 ◽  
Vol 104 (2) ◽  
pp. 364-373 ◽  
Author(s):  
Brian M. Davis ◽  
Laurent Humeau ◽  
Vladimir Slepushkin ◽  
Gwendolyn Binder ◽  
Lauren Korshalla ◽  
...  

Abstract High gene transfer efficiencies have been difficult to achieve in hematopoietic progenitor cells (HPCs) but are important to therapeutic success of HPC gene therapy. Efficient gene transfer is especially challenging with use of column-purified vector for clinical application, as opposed to centrifuged vector commonly used for research. We investigated novel approaches to increase transduction by using a clinically applicable protocol and quantities of column-purified lentiviral vector. Recognizing the association of adenosine 5′-triphosphate (ATP)-binding cassette (ABC) transporters with HPC biology, we investigated the effect of transporter inhibitors on transduction. We found the ABC transporter inhibitor verapamil improved transduction efficiency 2- to 6-fold into CD34+ cells isolated from mobilized peripheral blood, bone marrow, and cord blood. Verapamil also improved transduction in human SCID (severe combined immunodeficient) repopulating cell (SRC) transduction 3- to 4-fold, resulting in 80% to 90% transduction levels in mice receiving primary and secondary transplants without alterations in multilineage reconstitution. Additional ABC transporter substrate inhibitors like quinidine, diltiazem, and ritonavir also enhanced transduction 2- to 3-fold, although ABC transporter inhibitors that are not substrates did not. Enhanced transduction was not observed in mature hematopoietic cells, neurospheres, mesenchymal stem cells, or hepatocytes. Enhancement of transduction in HPCs was observed with vesicular stomatitis virus-G (VSV-G)-pseudotyped lentiviral vector but not with vector pseudotyped with RD114. Thus, we present a new approach for efficient delivery to primitive HPCs by VSV-G-pseudotyped lentiviral vectors. (Blood. 2004;104:364-373)

Gene Therapy ◽  
2000 ◽  
Vol 7 (10) ◽  
pp. 886-895 ◽  
Author(s):  
D S Strayer ◽  
R J Pomerantz ◽  
M Yu ◽  
M Rosenzweig ◽  
M BouHamdan ◽  
...  

Blood ◽  
1994 ◽  
Vol 84 (9) ◽  
pp. 2890-2897 ◽  
Author(s):  
C von Kalle ◽  
HP Kiem ◽  
S Goehle ◽  
B Darovsky ◽  
S Heimfeld ◽  
...  

Abstract Retroviral-mediated gene transfer is the most attractive modality for gene transfer into hematopoietic stem cells. However, transduction efficiency has been low using amphotropic Moloney murine leukemia virus (MoMLV) vectors. In this study, we investigated modifications of gene transfer using amphotropic MoMLV vectors in cell-free supernatant for their ability to increase the currently low transduction of both committed hematopoietic progenitors, granulocyte-macrophage colony- forming units (CFU-GMs), and their precursors, long-term culture- initiating cells (LTC-IC). First, based on the observation that bone marrow cells express more gibbon ape leukemia virus (GALV) receptor (Glvr-1) than amphotropic receptor (Ram-1), PG13/LN, which is a MoMLV vector pseudotyped with the GALV envelope, was compared with the analogous amphotropic envelope vector (PA317/LN). Second, progenitor cell transduction efficiency was compared between CD34 enriched and nonenriched progenitor populations. Third, the duration of transduction in vitro was extended to increase the proportion of progenitor cells that entered cell cycle and could thereby integrate vector cDNA. In 20 experiments, 1 x 10(6) marrow or peripheral blood mononuclear cells (PBMCs)/mL were exposed to identical titers of pseudotyped PG13/LN vector or PA317/LN vector in the presence of recombinant human interleukin-1 (IL-1), IL-3, IL-6, and stem cell factor (SCF; c-kit ligand) for 5 days. 50% of fresh vector supernatant was refed daily. Hematopoietic progenitor cells as measured by G418-resistant granulomonocytic colony (CFU-GM) formation were transduced more effectively with PG13/LN (19.35%) than with PA317/LN (11.5%, P = .012). In 11 further experiments, enrichment of CD34 antigen positive cells significantly improved gene transfer from 13.9% G418-resistant CFU-GM in nonenriched to 24.9% in CD34-enriched progenitor cells (P < .01). To analyze gene transfer after extended growth factor-supported long-term culture, 1 x 10(6) marrow cells/mL were cultured with IL-1, IL-3, IL-6, and SCF (50 ng/mL each) for 1, 2, and 3 weeks. Fifty percent of PG13/LN supernatant with growth factors was refed on 5 days per week. Five percent of marrow CFU-GM and 67% of LTC-IC were G418 resistant at 1 week (n = 4), 60% of CFU-GM and 100% of LTC-IC were resistant at 2 weeks (n = 2) and 74% of CFU-GM (n = 4) and 82% of LTC-IC (n = 2) were resistant at three weeks.(ABSTRACT TRUNCATED AT 400 WORDS)


Blood ◽  
1994 ◽  
Vol 84 (9) ◽  
pp. 2890-2897 ◽  
Author(s):  
C von Kalle ◽  
HP Kiem ◽  
S Goehle ◽  
B Darovsky ◽  
S Heimfeld ◽  
...  

Retroviral-mediated gene transfer is the most attractive modality for gene transfer into hematopoietic stem cells. However, transduction efficiency has been low using amphotropic Moloney murine leukemia virus (MoMLV) vectors. In this study, we investigated modifications of gene transfer using amphotropic MoMLV vectors in cell-free supernatant for their ability to increase the currently low transduction of both committed hematopoietic progenitors, granulocyte-macrophage colony- forming units (CFU-GMs), and their precursors, long-term culture- initiating cells (LTC-IC). First, based on the observation that bone marrow cells express more gibbon ape leukemia virus (GALV) receptor (Glvr-1) than amphotropic receptor (Ram-1), PG13/LN, which is a MoMLV vector pseudotyped with the GALV envelope, was compared with the analogous amphotropic envelope vector (PA317/LN). Second, progenitor cell transduction efficiency was compared between CD34 enriched and nonenriched progenitor populations. Third, the duration of transduction in vitro was extended to increase the proportion of progenitor cells that entered cell cycle and could thereby integrate vector cDNA. In 20 experiments, 1 x 10(6) marrow or peripheral blood mononuclear cells (PBMCs)/mL were exposed to identical titers of pseudotyped PG13/LN vector or PA317/LN vector in the presence of recombinant human interleukin-1 (IL-1), IL-3, IL-6, and stem cell factor (SCF; c-kit ligand) for 5 days. 50% of fresh vector supernatant was refed daily. Hematopoietic progenitor cells as measured by G418-resistant granulomonocytic colony (CFU-GM) formation were transduced more effectively with PG13/LN (19.35%) than with PA317/LN (11.5%, P = .012). In 11 further experiments, enrichment of CD34 antigen positive cells significantly improved gene transfer from 13.9% G418-resistant CFU-GM in nonenriched to 24.9% in CD34-enriched progenitor cells (P < .01). To analyze gene transfer after extended growth factor-supported long-term culture, 1 x 10(6) marrow cells/mL were cultured with IL-1, IL-3, IL-6, and SCF (50 ng/mL each) for 1, 2, and 3 weeks. Fifty percent of PG13/LN supernatant with growth factors was refed on 5 days per week. Five percent of marrow CFU-GM and 67% of LTC-IC were G418 resistant at 1 week (n = 4), 60% of CFU-GM and 100% of LTC-IC were resistant at 2 weeks (n = 2) and 74% of CFU-GM (n = 4) and 82% of LTC-IC (n = 2) were resistant at three weeks.(ABSTRACT TRUNCATED AT 400 WORDS)


1991 ◽  
Vol 2 (3) ◽  
pp. 203-213 ◽  
Author(s):  
Denis Cournoyer ◽  
Maurizio Scarpa ◽  
Kohnosuke Mitani ◽  
Kateri A. Moore ◽  
Dina Markowitz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document