Highly efficient gene transfer into preterm CD34+ hematopoietic progenitor cells

2000 ◽  
Vol 183 (3) ◽  
pp. 732-737 ◽  
Author(s):  
Laurence E. Shields ◽  
Hans-Peter Kiem ◽  
Robert G. Andrews
Gene Therapy ◽  
2000 ◽  
Vol 7 (10) ◽  
pp. 886-895 ◽  
Author(s):  
D S Strayer ◽  
R J Pomerantz ◽  
M Yu ◽  
M Rosenzweig ◽  
M BouHamdan ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (2) ◽  
pp. 364-373 ◽  
Author(s):  
Brian M. Davis ◽  
Laurent Humeau ◽  
Vladimir Slepushkin ◽  
Gwendolyn Binder ◽  
Lauren Korshalla ◽  
...  

Abstract High gene transfer efficiencies have been difficult to achieve in hematopoietic progenitor cells (HPCs) but are important to therapeutic success of HPC gene therapy. Efficient gene transfer is especially challenging with use of column-purified vector for clinical application, as opposed to centrifuged vector commonly used for research. We investigated novel approaches to increase transduction by using a clinically applicable protocol and quantities of column-purified lentiviral vector. Recognizing the association of adenosine 5′-triphosphate (ATP)-binding cassette (ABC) transporters with HPC biology, we investigated the effect of transporter inhibitors on transduction. We found the ABC transporter inhibitor verapamil improved transduction efficiency 2- to 6-fold into CD34+ cells isolated from mobilized peripheral blood, bone marrow, and cord blood. Verapamil also improved transduction in human SCID (severe combined immunodeficient) repopulating cell (SRC) transduction 3- to 4-fold, resulting in 80% to 90% transduction levels in mice receiving primary and secondary transplants without alterations in multilineage reconstitution. Additional ABC transporter substrate inhibitors like quinidine, diltiazem, and ritonavir also enhanced transduction 2- to 3-fold, although ABC transporter inhibitors that are not substrates did not. Enhanced transduction was not observed in mature hematopoietic cells, neurospheres, mesenchymal stem cells, or hepatocytes. Enhancement of transduction in HPCs was observed with vesicular stomatitis virus-G (VSV-G)-pseudotyped lentiviral vector but not with vector pseudotyped with RD114. Thus, we present a new approach for efficient delivery to primitive HPCs by VSV-G-pseudotyped lentiviral vectors. (Blood. 2004;104:364-373)


1991 ◽  
Vol 2 (3) ◽  
pp. 203-213 ◽  
Author(s):  
Denis Cournoyer ◽  
Maurizio Scarpa ◽  
Kohnosuke Mitani ◽  
Kateri A. Moore ◽  
Dina Markowitz ◽  
...  

Blood ◽  
1989 ◽  
Vol 74 (1) ◽  
pp. 152-155 ◽  
Author(s):  
FG Schuening ◽  
R Storb ◽  
RB Stead ◽  
S Goehle ◽  
R Nash ◽  
...  

Abstract Amphotropic helper-free retroviral vectors containing either the bacterial neomycin phosphotransferase gene (NEO) or a mutant dihydrofolate reductase gene (DHFR*) were used to infect canine hematopoietic progenitor cells. In previous experiments, successful transfer and expression of both genes in canine CFU-GM were achieved after 24-hour cocultivation with virus-producing cells. The average rate of gene expression was 10% (6% to 16%) as measured by the number of CFU-GM resistant to either the aminoglycoside G418 or methotrexate. In an attempt to increase the efficiency of gene transfer, marrow was cocultured for 24 hours with either NEO or DHFR* virus-producing packaging cells and then kept in long-term marrow culture fed three times with virus-containing supernatant (2 to 5 x 10(6) CFU/mL). After six days, cells were harvested and cultured in CFU-GM assay with and without a selective agent. The average rate of gene expression in CFU- GM in five independent experiments was 46% and ranged from 19% to 87%. In conclusion, the efficiency of gene transfer into canine hematopoietic progenitor cells has been increased fourfold by combining cocultivation with long-term marrow culture as compared with results obtained with cocultivation only.


1994 ◽  
Vol 179 (6) ◽  
pp. 1867-1875 ◽  
Author(s):  
S Z Zhou ◽  
S Cooper ◽  
L Y Kang ◽  
L Ruggieri ◽  
S Heimfeld ◽  
...  

Recombinant adeno-associated virus 2 (AAV) virions were constructed containing a gene for resistance to neomycin (neoR), under the control of either the herpesvirus thymidine kinase (TK) gene promoter (vTK-Neo), or the human parvovirus B19 p6 promoter (vB19-Neo), as well as those containing an upstream erythroid cell-specific enhancer (HS-2) from the locus control region of the human beta-globin gene cluster (vHS2-TK-Neo; vHS2-B19-Neo). These recombinant virions were used to infect either low density or highly enriched populations of CD34+ cells isolated from human umbilical cord blood. In clonogenic assays initiated with cells infected with the different recombinant AAV-Neo virions, equivalent high frequency transduction of the neoR gene into slow-cycling multipotential, erythroid, and granulocyte/macrophage (GM) progenitor cells, including those with high proliferative potential, was obtained without prestimulation with growth factors, indicating that these immature and mature hematopoietic progenitor cells were susceptible to infection by the recombinant AAV virions. Successful transduction did not require and was not enhanced by prestimulation of these cell populations with cytokines. The functional activity of the transduced neo gene was evident by the development of resistance to the drug G418, a neomycin analogue. Individual high and low proliferative colony-forming unit (CFU)-GM, burst-forming unit-erythroid, and CFU-granulocyte erythroid macrophage megakaryocyte colonies from mock-infected, or the recombinant virus-infected cultures were subjected to polymerase chain reaction analysis using a neo-specific synthetic oligonucleotide primer pair. A 276-bp DNA fragment that hybridized with a neo-specific DNA probe on Southern blots was only detected in those colonies cloned from the recombinant virus-infected cells, indicating stable integration of the transduced neo gene. These studies suggest that parvovirus-based vectors may prove to be a useful alternative to the more commonly used retroviral vectors for high efficiency gene transfer into slow or noncycling primitive hematopoietic progenitor cells, without the need for growth factor stimulation, which could potentially lead to differentiation of these cells before transplantation.


Sign in / Sign up

Export Citation Format

Share Document