PECAM-1 is expressed on hematopoietic stem cells throughout ontogeny and identifies a population of erythroid progenitors

Blood ◽  
2004 ◽  
Vol 104 (4) ◽  
pp. 1010-1016 ◽  
Author(s):  
Christina I. Baumann ◽  
Alexis S. Bailey ◽  
Weiming Li ◽  
Michael J. Ferkowicz ◽  
Mervin C. Yoder ◽  
...  

AbstractPlatelet endothelial cell adhesion molecule-1 (PECAM-1) (CD31) is an adhesion molecule expressed on endothelial cells and subsets of leukocytes. Analysis of phenotypically defined hematopoietic stem cells (HSCs) from the yolk sac, fetal liver, and adult bone marrow demonstrates CD31 expression on these cells throughout development. CD31+ c-kit+ cells, but not CD31– c-kit+ cells, isolated from day-9.5 yolk sac give rise to multilineage hematopoiesis in vivo. Further evaluation of the CD31+ lineage marker–negative fraction of adult bone marrow reveals functionally distinct cell subsets. Transplantation of CD31+ Lin– c-kit– cells fails to protect lethally irradiated recipients, while CD31+ Lin– c-kit+ Sca-1– cells (CD31+ Sca-1–) provide radioprotection in the absence of long-term donor-derived hematopoiesis. Although donor-derived leukocytes were not detected in CD31+ Sca-1– recipients, donor-derived erythroid cells were transiently produced during the initial phases of bone marrow recovery. These results demonstrate CD31 expression on hematopoietic stem cells throughout ontogeny and identify a population of CD31+ short-term erythroid progenitors cells that confer protection from lethal doses of radiation.

2010 ◽  
Vol 6 (3) ◽  
pp. 194-198 ◽  
Author(s):  
Kentaro Hosokawa ◽  
Fumio Arai ◽  
Hiroki Yoshihara ◽  
Hiroko Iwasaki ◽  
Mark Hembree ◽  
...  

1984 ◽  
Vol 159 (3) ◽  
pp. 731-745 ◽  
Author(s):  
R A Fleischman ◽  
B Mintz

Bone marrow of normal adult mice was found, after transplacental inoculation, to contain cells still able to seed the livers of early fetuses. The recipients' own hematopoietic stem cells, with a W-mutant defect, were at a selective disadvantage. Progression of donor strain cells to the bone marrow, long-term self-renewal, and differentiation into myeloid and lymphoid derivatives was consistent with the engraftment of totipotent hematopoietic stem cells (THSC) comparable to precursors previously identified (4) in normal fetal liver. More limited stem cells, specific for the myeloid or lymphoid cell lineages, were not detected in adult bone marrow. The bone marrow THSC, however, had a generally lower capacity for self-renewal than did fetal liver THSC. They had also embarked upon irreversible changes in gene expression, including partial histocompatibility restriction. While completely allogeneic fetal liver THSC were readily accepted by fetuses, H-2 incompatibility only occasionally resulted in engraftment of adult bone marrow cells and, in these cases, was often associated with sudden death at 3-5 mo. On the other hand, H-2 compatibility, even with histocompatibility differences at other loci, was sufficient to ensure long-term success as often as with fetal liver THSC.


2004 ◽  
Vol 200 (7) ◽  
pp. 871-882 ◽  
Author(s):  
Kam-Wing Ling ◽  
Katrin Ottersbach ◽  
Jan Piet van Hamburg ◽  
Aneta Oziemlak ◽  
Fong-Ying Tsai ◽  
...  

GATA-2 is an essential transcription factor in the hematopoietic system that is expressed in hematopoietic stem cells (HSCs) and progenitors. Complete deficiency of GATA-2 in the mouse leads to severe anemia and embryonic lethality. The role of GATA-2 and dosage effects of this transcription factor in HSC development within the embryo and adult are largely unexplored. Here we examined the effects of GATA-2 gene dosage on the generation and expansion of HSCs in several hematopoietic sites throughout mouse development. We show that a haploid dose of GATA-2 severely reduces production and expansion of HSCs specifically in the aorta-gonad-mesonephros region (which autonomously generates the first HSCs), whereas quantitative reduction of HSCs is minimal or unchanged in yolk sac, fetal liver, and adult bone marrow. However, HSCs in all these ontogenically distinct anatomical sites are qualitatively defective in serial or competitive transplantation assays. Also, cytotoxic drug-induced regeneration studies show a clear GATA-2 dose–related proliferation defect in adult bone marrow. Thus, GATA-2 plays at least two functionally distinct roles during ontogeny of HSCs: the production and expansion of HSCs in the aorta-gonad-mesonephros and the proliferation of HSCs in the adult bone marrow.


Blood ◽  
1996 ◽  
Vol 87 (10) ◽  
pp. 4057-4067 ◽  
Author(s):  
TD Randall ◽  
FE Lund ◽  
MC Howard ◽  
IL Weissman

Using a monoclonal antibody to murine CD38, we showed that a population of adult bone marrow cells that expressed the markers Sca-1 and c-kit but lacked the lineage markers Mac-1, GR-1, B220, IgM, CD3, CD4, CD8 and CD5 could be subdivided by the expression of CD38. We showed that CD38high c-kit+ Sca-1+, linlow/-cells sorted from adult bone marrow cultured with interleukin-3 (IL-3), IL-6, and kit-L produced much larger colonies in liquid culture at a greater frequency than their CD38low/- counterparts. In addition, we found that CD36low/ - cells contained most of the day-12 colony-forming units-spleen (CFU-S) but were not long-term reconstituting cells, whereas the population that expressed higher levels of CD38 contained few, but significant, day-12 CFU-S and virtually all the long-term reconstituting stem cells. Interestingly, the CD38high Sca-1+ c-kit+ linlow/- cells isolated from day-E14.5 fetal liver were also found to be long-term reconstituting stem cells. This is in striking contrast to human hematopoietic progenitors in which the most primitive hematopoietic cells from fetal tissues lack the expression of CD38. Furthermore, because antibodies to CD38 could functionally replace antibodies to Thy-1.1 in a stem cell purification procedure, the use of anti-CD38 may be more generally applicable to the purification of hematopoietic stem cells from mouse strains that do not express the Thy-1.1 allele.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 10-11
Author(s):  
Lijian Shao ◽  
Na Yoon Paik ◽  
Kostandin V. Pajcini

Notch signaling is known to play important roles in hematopoietic development and differentiation. Notch1 is required for emergence of the definitive hematopoietic stem cells (HSCs) from the hemogenic endothelium, and we have previously shown that Notch signaling is essential for survival and function of HSCs in the fetal liver. Activation of canonical Notch signaling requires direct cellular contact; thus, the identity of the ligand and the ligand-presenting cell during hematopoietic development would provide valuable information of the Notch signaling mechanism in HSCs as well as the identity of key niche cells that drive the expansion and cell fate decisions of embryonic HSCs. In the present study, we have taken a comprehensive approach to determine the ligands and cells that initiate Notch signaling in the mouse fetal liver. To this end, we have performed single-cell PCR analysis for all Notch signaling proteins in E14.5 fetal HSCs and compared the findings to the adult bone marrow HSCs. We also have analyzed fetal liver endothelial cells for surface expression of all Notch ligands. We determined that Jagged1 (Jag1) is highly expressed in both endothelial cells as well as in fetal HSCs but not adult HSCs. We have performed conditional loss-of-function analysis of Jag1 in fetal endothelial cells using inducible Ve-cadherinCreERT2 as well as in fetal hematopoietic lineages using constitutive VavCre. Our results indicate that while loss of endothelial Jag1 has severe effects in embryonic vascular development, loss of hematopoietic Jag1 allows for normal fetal morphology, yet severely impedes the functional ability of fetal liver HSCs to expand and differentiate both in vitro and in vivo. Fetal to adult transplantation of VavCre+Jag1f/f HSCs indicated a defect in reconstitution potential of fetal HSCs that lack Jag1 expression. Our findings indicate that hematopoietic Jag1 is essential for maturation of HSCs in the fetal liver and for homing and reconstitution potential of HSCs into the post-natal bone marrow microenvironment. Disclosures No relevant conflicts of interest to declare.


2004 ◽  
Vol 114 (6) ◽  
pp. 765-774 ◽  
Author(s):  
Atsushi Otani ◽  
Michael Ian Dorrell ◽  
Karen Kinder ◽  
Stacey K. Moreno ◽  
Steven Nusinowitz ◽  
...  

Blood ◽  
2004 ◽  
Vol 103 (7) ◽  
pp. 2513-2521 ◽  
Author(s):  
Cheng Cheng Zhang ◽  
Harvey F. Lodish

Abstract Hematopoietic stem cells (HSCs) undergo dramatic expansion during fetal liver development, but attempts to expand their numbers ex vivo have failed. We hypothesized that unidentified fetal liver cells produce growth factors that support HSC proliferation. Here we describe a novel population of CD3+ and Ter119- day-15 fetal liver cells that support HSC expansion in culture, as determined by limiting dilution mouse reconstitution analyses. DNA array experiments showed that, among other proteins, insulin-like growth factor 2 (IGF-2) is specifically expressed in fetal liver CD3+ cells but not in several cells that do not support HSCs. Treatment of fetal liver CD3+Ter119- cells with anti–IGF-2 abrogated their HSC supportive activity, suggesting that IGF-2 is the key molecule produced by these cells that stimulates HSC expansion. All mouse fetal liver and adult bone marrow HSCs express receptors for IGF-2. Indeed, when combined with other growth factors, IGF-2 supports a 2-fold expansion of day-15 fetal liver Lin-Sca-1+c-Kit+ long-term (LT)–HSC numbers. Thus, fetal liver CD3+Ter119- cells are a novel stromal population that is capable of supporting HSC expansion, and IGF-2, produced by these cells, is an important growth factor for fetal liver and, as we show, adult bone marrow HSCs.


2012 ◽  
Vol 109 (14) ◽  
pp. 5394-5398 ◽  
Author(s):  
E. E. B. Ghosn ◽  
R. Yamamoto ◽  
S. Hamanaka ◽  
Y. Yang ◽  
L. A. Herzenberg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document