Intracellular interaction of von Willebrand factor and factor VIII depends on cellular context: lessons from platelet-expressed factor VIII

Blood ◽  
2005 ◽  
Vol 105 (12) ◽  
pp. 4674-4676 ◽  
Author(s):  
Helen Yarovoi ◽  
Alan T. Nurden ◽  
Robert R. Montgomery ◽  
Paquita Nurden ◽  
Mortimer Poncz

Abstract We have previously reported that ectopically expressed factor VIII (FVIII) is stored within platelets and is released upon platelet activation. Studies by others in various cell lines have suggested that having von Willebrand factor (VWF) coexpression is necessary for FVIII granular storage and for its secretion. We tested the importance of VWF coexpression for ectopic storage of FVIII in platelets and for its bioavailability. Transgenic mice expressing platelet-specific FVIII were crossed onto a VWF-/- background. Antigenic levels of platelet FVIII in these mice were nearly unchanged whether VWF was present or not. Whole-blood clotting times and FeCl3 carotid artery injury correction demonstrated that platelet FVIII demonstrably improved the bleeding diathesis in FVIIInull mice independent of the platelets' VWF status. Immunogold electron microscopy demonstrated that platelet FVIII is stored in platelet α-granules independent of the presence of VWF. It appears that FVIII's interaction with VWF and its intracellular transportation, storage, and secretion differ greatly depending on the cell type. The molecular basis for these differences now needs to be elucidated. (Blood. 2005;105:4674-4676)

Blood ◽  
1990 ◽  
Vol 75 (1) ◽  
pp. 20-26 ◽  
Author(s):  
C Mazurier ◽  
J Dieval ◽  
S Jorieux ◽  
J Delobel ◽  
M Goudemand

Abstract The patients with inherited bleeding diathesis related to quantitative, structural, and/or functional abnormalities of von Willebrand factor (vWF) are said to have von Willebrand's disease (vWD). We report here the clinical and laboratory features of a 50-year-old woman with a life- long history of excessive bleeding. Her particular laboratory data are factor VIII (FVIII) deficiency, subnormal bleeding time, and the presence of all plasma and platelet vWF multimers in normal amounts. Infused with FVIII/vWF concentrate, she showed a persistent increase in FVIII that led us to discard hemophilia A carrier or “acquired hemophilia” diagnoses. vWF devoid of FVIII purified from normal and patient's plasma by immunoaffinity on anti-vWF monoclonal antibody (MoAb) was immobilized onto polystyrene tubes that were further incubated with purified normal FVIII. The bound FVIII was evidenced using radiolabeled anti-FVIII MoAb. The data showed that the patient's vWF, in contrast to vWF purified from normal plasma, was unable to bind FVIII. Furthermore, no inhibitor of FVIII/vWF interaction was evidenced in incubating purified normal vWF with the patient's plasma before the addition of FVIII and anti-FVIII MoAb. These results support the concept that the bleeding diathesis of this patient appears to be due mainly to her abnormal vWF preventing FVIII/vWF interaction. This abnormality, which is not yet described in present classification of vWD, could be considered as a new variant of vWD.


Blood ◽  
1990 ◽  
Vol 75 (1) ◽  
pp. 20-26
Author(s):  
C Mazurier ◽  
J Dieval ◽  
S Jorieux ◽  
J Delobel ◽  
M Goudemand

The patients with inherited bleeding diathesis related to quantitative, structural, and/or functional abnormalities of von Willebrand factor (vWF) are said to have von Willebrand's disease (vWD). We report here the clinical and laboratory features of a 50-year-old woman with a life- long history of excessive bleeding. Her particular laboratory data are factor VIII (FVIII) deficiency, subnormal bleeding time, and the presence of all plasma and platelet vWF multimers in normal amounts. Infused with FVIII/vWF concentrate, she showed a persistent increase in FVIII that led us to discard hemophilia A carrier or “acquired hemophilia” diagnoses. vWF devoid of FVIII purified from normal and patient's plasma by immunoaffinity on anti-vWF monoclonal antibody (MoAb) was immobilized onto polystyrene tubes that were further incubated with purified normal FVIII. The bound FVIII was evidenced using radiolabeled anti-FVIII MoAb. The data showed that the patient's vWF, in contrast to vWF purified from normal plasma, was unable to bind FVIII. Furthermore, no inhibitor of FVIII/vWF interaction was evidenced in incubating purified normal vWF with the patient's plasma before the addition of FVIII and anti-FVIII MoAb. These results support the concept that the bleeding diathesis of this patient appears to be due mainly to her abnormal vWF preventing FVIII/vWF interaction. This abnormality, which is not yet described in present classification of vWD, could be considered as a new variant of vWD.


1987 ◽  
Author(s):  
R Harrison

Liver cells were derived from cadaveric organ donors. Pieces of human liver 5 to 50 grams were minced, washed, and incubated in collagenase at 37 degrees C. After washing, the cell suspension was plated into culture vessels that had been briefly pre-treated with an extract derived from human liver. A mixed population of liver cells, including endothelial cells, hepatocytes, and Kupffer cells, attached within hours. At the end of 2 to 3 weeks there developed clusters of densely packed cells of two types. The most numerous cells were initially fusiform but grew as a monolayer even when densely packed. As density increased they assumed a polygonal form; cells with this morphological appearance stained immunocytochemically for von Willebrand factor antigen. They were relatively small and resembled cells derived from human umbilical vein except that the cytoplasm was more filmy in appearance. The second prominent cell type was significantly larger and likewise replicated to form clusters. These large cells sometimes contained multiple nuclei, exhibited a relatively low nuclear to cytoplasmic ratio, and immunocytochemically stained for human fibrinogen. A more distinct nuclear membrane and prominent nucleoli were characteristics of hepatocytes that were useful light microscopically in distinguishing these cells from sinusoidal endothelial cells. Ultrastructurally, endothelial cells were characterized by small size, holes in and among the cells that probably were the in vitro analogue of fenestrae, and numerous Weibel-Palade bodies in the cytoplasm, which otherwise was relatively bland. Hepatocytes, by contrast, had an active appearing cytoplasm containing more organelles. Canaliculi and typical tight junctions formed between adjacent hepatocytes. Levels of vWF and fibrinogen increased in a time dependent manner in media overlying this mixed population of cells. Human factor VIII has not yet been detected in the media overlying these mixed cells derived from human liver, and factor VIII antigen has not yet been demonstrable immunocytochemically in either cell type.


1987 ◽  
Vol 58 (02) ◽  
pp. 753-757 ◽  
Author(s):  
M F López-Fernández ◽  
C López-Berges ◽  
R Martín ◽  
A Pardo ◽  
F J Ramos ◽  
...  

SummaryThe multimeric and subunit patterns of plasma von Willebrand factor (vWF) were analyzed in eight patients with myeloproliferative syndrome (MS) in order to investigate the possible existence of heterogeneity in the “in vivo” proteolytic cleavage of the protein, previously observed in this entity. Six patients lacked large vWF multimers, five of them having normal bleeding times (BT) and clinically documented episodes of thrombotic origin, whereas one patient had long BT and bleeding symptoms. Seven patients showed a relative increase in the 176 kDa subunit fragment while the 189 kDa polypeptide was increased in only one. In addition, another patient (and prior to any therapy) showed the presence of a new fragment of approximately 95 kDa which disappeared after Busulfan therapy. The collection of blood from these patients with proteinase inhibitors did not correct the abnormalities.The infusion of DDAVP to two patients with abnormal vWF was accompanied by: the appearance of larger vWF multimers which disappeared rapidly from plasma; an increase in the relative proportion of the satellite bands of each multimer and a further increase of the 176 kDa fragment. These data point to some heterogeneity in the vWF abnormality present in MS which may be related in part to a variable degree of proteolysis of vWF occurring “in vivo” rather than “in vitro”, and which may be associated to either a thrombotic or a bleeding diathesis. They also suggest that despite the presence of abnormal, already proteolyzed vWF, DDAVP-enhanced proteolysis occurs in MS to a similar extent to what is described in normal individuals.


1996 ◽  
Vol 76 (05) ◽  
pp. 749-754 ◽  
Author(s):  
Suzuki Suzuki ◽  
Morio Arai ◽  
Kagehiro Amano ◽  
Kazuhiko Kagawa ◽  
Katsuyuki Fukutake

SummaryIn order to clarify the potential role of von Willebrand factor (vWf) in attenuating the inactivation of factor VIII (fVIII) by those antibodies with C2 domain specificity, we investigated a panel of 14 human antibodies to fVIII. Immunoblotting analysis localized light chain (C2 domain) epitopes for four cases, heavy chain (A2 domain) epitopes in five cases, while the remaining five cases were both light and heavy chains. The inhibitor titer was considerably higher for Kogenate, a recombinant fVIII concentrate, than for Haemate P, a fVIII/vWf complex concentrate, in all inhibitor plasmas that had C2 domain specificity. In five inhibitor plasmas with A2 domain specificity and in five with both A2 and C2 domain specificities, Kogenate gave titers similar to or lower than those with Haemate P. The inhibitory effect of IgG of each inhibitor plasma was then compared with recombinant fVIII and its complex with vWf. When compared to the other 10 inhibitor IgGs, IgG concentration, which inhibited 50% of fVIII activity (IC50), was remarkably higher for the fVIII/vWf complex than for fVIII in all the inhibitor IgGs that had C2 domain reactivity. Competition of inhibitor IgG and vWf for fVIII binding was observed in an ELISA system. In 10 inhibitors that had C2 domain reactivity, the dose dependent inhibition of fVIII-vWf complex formation was observed, while, in the group of inhibitors with A2 domain specificity, there was no inhibition of the complex formation except one case. We conclude that a subset of fVIII inhibitors, those that bind to C2 domain determinants, are less inhibitory to fVIII when it is complexed with vWf that binds to overlapping region in the C2 domain.


1978 ◽  
Vol 40 (02) ◽  
pp. 245-251 ◽  
Author(s):  
D Meyer ◽  
P A Mc Kee ◽  
L W Hoyer ◽  
T S Zimmerman ◽  
H R Gralnick

Sign in / Sign up

Export Citation Format

Share Document