mixed population
Recently Published Documents


TOTAL DOCUMENTS

493
(FIVE YEARS 96)

H-INDEX

44
(FIVE YEARS 4)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Nariyuki Nakagiri ◽  
Kazunori Sato ◽  
Yukio Sakisaka ◽  
Kei-ichi Tainaka

AbstractThe infectious disease (COVID-19) causes serious damages and outbreaks. A large number of infected people have been reported in the world. However, such a number only represents those who have been tested; e.g. PCR test. We focus on the infected individuals who are not checked by inspections. The susceptible-infected-recovered (SIR) model is modified: infected people are divided into quarantined (Q) and non-quarantined (N) agents. Since N-agents behave like uninfected people, they can move around in a stochastic simulation. Both theory of well-mixed population and simulation of random-walk reveal that the total population size of Q-agents decrease in spite of increasing the number of tests. Such a paradox appears, when the ratio of Q exceeds a critical value. Random-walk simulations indicate that the infection hardly spreads, if the movement of all people is prohibited ("lockdown"). In this case the infected people are clustered and locally distributed within narrow spots. The similar result can be obtained, even when only non-infected people move around. However, when both N-agents and uninfected people move around, the infection spreads everywhere. Hence, it may be important to promote the inspections even for asymptomatic people, because most of N-agents are mild or asymptomatic.


Author(s):  
James R. Larkin ◽  
Susan Anthony ◽  
Vanessa A. Johanssen ◽  
Tianrong Yeo ◽  
Megan Sealey ◽  
...  

2022 ◽  
pp. 354-376
Author(s):  
Nagendra Kumar Chandrawanshi ◽  
Deepali Koreti ◽  
Anjali Kosre ◽  
Pramod Kumar Mahish

Cancer is a class of disorders that is characterized by the abnormal growth of cells in an uncontrolled manner. In cancer progression, tumor cells have become highly heterogeneous, and they create a mixed population of cells with different molecular characteristics. The mushroom bioactive compounds have a rich biological activity including immunomodulatory, anticarcinogenic, antiviral, antioxidant, and anti-inflammatory, etc. Besides, conventional anticancer drugs and applied therapy have tremendous challenges and limitations such as poor solubility, narrow therapeutic window, cytotoxicity to normal tissues, etc., which may be the causes of treatment failure in cancer. A previous study reported mushroom bioactive compounds against cancer treatment. The chapter focuses on mushroom-derived bioactive compounds and possible implications in nanotechnology and, further, will be utilized for new advanced nanoemulsion techniques for the promising treatment of cancer.


2021 ◽  
Vol 410 ◽  
pp. 126433
Author(s):  
Hongyu Gao ◽  
Juan Wang ◽  
Fan Zhang ◽  
Xiaopeng Li ◽  
Chengyi Xia
Keyword(s):  

2021 ◽  
Author(s):  
Roy Faiman ◽  
Alpha SEYDOU YARO ◽  
Adama Dao ◽  
Zana L Sanogo ◽  
Moussa Diallo ◽  
...  

Data suggests the malaria vector Anopheles coluzzii persists in the Sahel by dry-season aestivation though evidence is scant. We have marked Anopheles mosquitoes using deuterium (2H) to assess the contribution of aestivation to persistence of mosquitoes through the seven-month dry season. If local aestivation is the only way A. coluzzii persists, the frequency of marked mosquitoes should remain stable throughout, whereas finding no marked mosquitoes would be evidence against aestivation. Larval sites were spiked with 2H at the end of the 2017 wet season in two Sahelian villages in Mali. We monitored 2H-enriched populations until the onset of rains. By the end of the enrichment period, 33% of A. coluzzii mosquitoes were clearly marked. Expectedly, 2H levels in marked mosquitoes degraded over time, resulting in a partial overlap of the marked and non-marked 2H distributions. We utilized three methods to estimate the fraction of marked mosquitoes in the population. Seven months after enrichment, 7% of the population had 2H values above the highest pre-enrichment value. An excess of 21% exceeded the 3rd quartile of the pre-enrichment population. A finite mixed population model showed 2.5% represented a subpopulation of marked mosquitoes with elevated 2H, compatible with our predictions. We provide evidence that aestivation is a major persistence mechanism of A. coluzzii in the Sahel, contributing at least 20% of the adults at the onset of rains, suggesting A. coluzzii utilizes multiple persistence strategies enabling its populations rapid buildup, facilitating subsequent malaria resurgence. These may complicate vector control and malaria elimination campaigns.


2021 ◽  
Vol 49 (11) ◽  
pp. 030006052097923
Author(s):  
Xiru Xu ◽  
Woruo Ye ◽  
Hanqing Chen ◽  
Ming Liu ◽  
Weimin Jiang ◽  
...  

Objective We conducted meta-analysis of relevant case-control trials to determine the association between endothelial nitric oxide synthase (eNOS) intron 4a/b gene polymorphisms and hypertension susceptibility. Methods We searched the PubMed, Cochrane, and Embase databases using relevant keywords and reviewed pertinent literature sources. All articles published up to July 2019 were considered for inclusion. Based on the qualified studies, we performed a meta-analysis of the associations between eNOS intron 4a/b polymorphisms and the risk of hypertension. Results Fourteen studies were included in this meta-analysis, including 3344 cases and 3377 controls. The eNOS intron 4a/b locus was significantly associated with increased susceptibility to hypertension (including essential hypertension) in the overall population, according to dominant, allelic, homozygote, heterozygote, and regressive models, in the mixed population according to the regressive model, and in Caucasians according to the dominant, allelic, heterozygote, and regressive models. The eNOS intron 4a/b locus was also significantly associated with increased susceptibility to essential hypertension in the mixed population according to the heterozygote model. Conclusion eNOS intron 4a/b gene polymorphisms increase susceptibility to hypertension, including essential hypertension.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Eoin Byrne ◽  
Johanna Björkmalm ◽  
James P. Bostick ◽  
Krishnan Sreenivas ◽  
Karin Willquist ◽  
...  

Abstract Background The members of the genus Caldicellulosiruptor have the potential for future integration into a biorefinery system due to their capacity to generate hydrogen close to the theoretical limit of 4 mol H2/mol hexose, use a wide range of sugars and can grow on numerous lignocellulose hydrolysates. However, members of this genus are unable to survive in high sugar concentrations, limiting their ability to grow on more concentrated hydrolysates, thus impeding their industrial applicability. In this study five members of this genus, C.owensensis, C. kronotskyensis, C.bescii, C.acetigenus and C.kristjanssonii, were developed to tolerate higher sugar concentrations through an adaptive laboratory evolution (ALE) process. The developed mixed population C.owensensis CO80 was further studied and accompanied by the development of a kinetic model based on Monod kinetics to quantitatively compare it with the parental strain. Results Mixed populations of Caldicellulosiruptor tolerant to higher glucose concentrations were obtained with C.owensensis adapted to grow up to 80 g/L glucose; other strains in particular C. kristjanssonii demonstrated a greater restriction to adaptation. The C.owensensis CO80 mixed population was further studied and demonstrated the ability to grow in glucose concentrations up to 80 g/L glucose, but with reduced volumetric hydrogen productivities ($$Q_{{{\text{H}}_{2} }}$$ Q H 2 ) and incomplete sugar conversion at elevated glucose concentrations. In addition, the carbon yield decreased with elevated concentrations of glucose. The ability of the mixed population C.owensensis CO80 to grow in high glucose concentrations was further described with a kinetic growth model, which revealed that the critical sugar concentration of the cells increased fourfold when cultivated at higher concentrations. When co-cultured with the adapted C.saccharolyticus G5 mixed culture at a hydraulic retention time (HRT) of 20 h, C.owensensis constituted only 0.09–1.58% of the population in suspension. Conclusions The adaptation of members of the Caldicellulosiruptor genus to higher sugar concentrations established that the ability to develop improved strains via ALE is species dependent, with C.owensensis adapted to grow on 80 g/L, whereas C.kristjanssonii could only be adapted to 30 g/L glucose. Although C.owensensis CO80 was adapted to a higher sugar concentration, this mixed population demonstrated reduced $$Q_{{{\text{H}}_{2} }}$$ Q H 2 with elevated glucose concentrations. This would indicate that while ALE permits adaptation to elevated sugar concentrations, this approach does not result in improved fermentation performances at these higher sugar concentrations. Moreover, the observation that planktonic mixed culture of CO80 was outcompeted by an adapted C.saccharolyticus, when co-cultivated in continuous mode, indicates that the robustness of CO80 mixed culture should be improved for industrial application.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258859
Author(s):  
Chaoqian Wang ◽  
Ziwei Wang ◽  
Qiuhui Pan

This paper establishes a compartment model describing the propagation of injurious information among a well-mixed population. We define the information’s injuriousness as the people practicing the information being injured and leaving the system. Some informed people practice the information and are active, while others do not practice and are inactive. With the recovery resources fixed, the two groups of informed people’s recovering rates are normalized considering the information features. The stability of the nonlinear system is thoroughly studied. Analyzing the reproduction number of the injurious information, we find that in general parameter space, when there are people in an informed compartment, it is not always necessary to consider their recovery resource allocation. Instead, only when their proportion reaches a critical point should it be allocated. Unless the people in an informed compartment form a certain proportion, we can take a laissez-faire attitude towards them. In a more realistic parameter space, once inactive informed people exist, they should be allocated recovery resources. On the one hand, when the recovering rate rises, the focus on both groups of informed people is necessary for more situations. On the other hand, when the rate of active informed people leaving the system rises, ignoring active informed people benefits removing the injurious information in more cases. The model provides qualitative ways in the scenarios of removing injurious information.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kian Boon Law ◽  
Kalaiarasu M. Peariasamy ◽  
Hishamshah Mohd Ibrahim ◽  
Noor Hisham Abdullah

AbstractThe conventional susceptible-infectious-recovered (SIR) model tends to magnify the transmission dynamics of infectious diseases, and thus the estimated total infections and immunized population may be higher than the threshold required for infection control and eradication. The study developed a new SIR framework that allows the transmission rate of infectious diseases to decline along with the reduced risk of contact infection to overcome the limitations of the conventional SIR model. Two new SIR models were formulated to mimic the declining transmission rate of infectious diseases at different stages of transmission. Model A utilized the declining transmission rate along with the reduced risk of contact infection following infection, while Model B incorporated the declining transmission rate following recovery. Both new models and the conventional SIR model were then used to simulate an infectious disease with a basic reproduction number (r0) of 3.0 and a herd immunity threshold (HIT) of 0.667 with and without vaccination. Outcomes of simulations were assessed at the time when the total immunized population reached the level predicted by the HIT, and at the end of simulations. Further, all three models were used to simulate the transmission dynamics of seasonal influenza in the United States and disease burdens were projected and compared with estimates from the Centers for Disease Control and Prevention. For the simulated infectious disease, in the initial phase of the outbreak, all three models performed expectedly when the sizes of infectious and recovered populations were relatively small. As the infectious population increased, the conventional SIR model appeared to overestimate the infections even when the HIT was achieved in all scenarios with and without vaccination. For the same scenario, Model A appeared to attain the level predicted by the HIT and in comparison, Model B projected the infectious disease to be controlled at the level predicted by the HIT only at high vaccination rates. For infectious diseases with high r0, and at low vaccination rates, the level at which the infectious disease was controlled cannot be accurately predicted by the current theorem. Transmission dynamics of infectious diseases with herd immunity can be accurately modelled by allowing the transmission rate of infectious diseases to decline along with the reduction of contact infection risk after recovery or vaccination. Model B provides a credible framework for modelling infectious diseases with herd immunity in a randomly mixed population.


2021 ◽  
Author(s):  
Cheryl Armstrong ◽  
Lijuang Zhou ◽  
Weiqi Luo ◽  
Ozgur Batuman ◽  
Olfemi Alabi ◽  
...  

Candidatus Liberibacter asiaticus (Las) is the prominent species of Liberibacter associated with huanglongbing, a devastating disease of citrus worldwide. In this study, we report the identification of a ~8.3 kb DNA region of the Las genome containing eight putative open reading frames (ORFs) flanked by two inverted repeats, which was not present in the Las str. psy62 genome. Comparisons with other genome sequences established this region as a unique genetic element associated with genome plasticity/instability. Primers specific for both the presence (Las wild-type) and absence (Las mutant) of this region were designed to study the population dynamics and host adaptation of the two strains. Las populations with and/or without the wild-type strain were detected and differentiated in >2,300 samples that included psyllids, periwinkle, and several species of citrus. In psyllids, although a mixed population of the wild-type and mutant was observed in most samples (88%), the wild-type Las was detected alone at a rate of 11%. In contrast, none of the infected citrus plants were positive for the wild-type alone, which harbored either the mutant strain alone (8%) or a mixed population of the mutant and wild-type (92%). Furthermore, the dynamics of these two major Las populations varied with different citrus hosts while an in-depth study on grapefruit that did not rapidly succumb to disease revealed that the population of mutant alone increased with time, indicating that the absence of this genetic element is associated with the fitness of Las in planta under the selection pressure of its host.


Sign in / Sign up

Export Citation Format

Share Document