Transport of the essential nutrient isoleucine in human erythrocytes infected with the malaria parasite Plasmodium falciparum

Blood ◽  
2006 ◽  
Vol 109 (5) ◽  
pp. 2217-2224 ◽  
Author(s):  
Rowena E. Martin ◽  
Kiaran Kirk

AbstractThe intraerythrocytic malaria parasite derives much of its requirement for amino acids from the digestion of the hemoglobin of its host cell. However, one amino acid, isoleucine, is absent from adult human hemoglobin and must therefore be obtained from the extracellular medium. In this study we have characterized the mechanisms involved in the uptake of isoleucine by the intraerythrocytic parasite. Under physiologic conditions the rate of transport of isoleucine into human erythrocytes infected with mature trophozoite-stage Plasmodium falciparum parasites is increased to approximately 5-fold that in uninfected cells, with the increased flux being via the new permeability pathways (NPPs) induced by the parasite in the host cell membrane. Transport via the NPPs ensures that protein synthesis is not rate limited by the flux of isoleucine across the erythrocyte membrane. On entering the infected erythrocyte, isoleucine is taken up into the parasite via a saturable, ATP-, Na+-, and H+-independent system which has the capacity to mediate the influx of isoleucine in exchange for leucine (liberated from hemoglobin). The accumulation of radiolabeled isoleucine within the parasite is mediated by a second (high-affinity, ATP-dependent) mechanism, perhaps involving metabolism and/or the concentration of isoleucine within an intracellular organelle.

1992 ◽  
Vol 102 (3) ◽  
pp. 527-532 ◽  
Author(s):  
A.R. Dluzewski ◽  
G.H. Mitchell ◽  
P.R. Fryer ◽  
S. Griffiths ◽  
R.J. Wilson ◽  
...  

We have attempted to determine whether the parasitophorous vacuole membrane, in which the malaria parasite (merozoite) encapsulates itself when it enters a red blood cell, is derived from the host cell plasma membrane, as the appearance of the invasion process in the electron microscope has been taken to suggest, or from lipid material stored in the merozoite. We have incorporated into the red cell membrane a haptenic phospholipid, phosphatidylethanolamine, containing an NBD (N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)) group, substituted in the acyl chain, and allowed it to translocate into the inner bilayer leaflet. After invasion of these labelled cells by the parasite, Plasmodium falciparum, immuno-gold electron microscopy was used to follow the distribution of the labelled lipid; this was found to be overwhelmingly in favour of the host cell membrane relative to the parasitophorous vacuole. Merozoites of P. knowlesi were allowed to attach irreversibly to red cells without invasion, using the method of pretreatment with cytochalasin. The region of contact between the merozoite and the host cell membrane was in all cases devoid of the labelled phosphatidylethanolamine. These results lead us to infer that the parasitophorous vacuole membrane is derived wholly or partly from lipid preexisting in the merozoite.


1984 ◽  
Vol 222 (3) ◽  
pp. 815-819 ◽  
Author(s):  
Y G Assaraf ◽  
J Golenser ◽  
D T Spira ◽  
U Bachrach

Human erythrocytes contain only trace amounts of polyamines and lack active polyamine biosynthetic enzymes. A remarkable increase in polyamine content, and in the activity of ornithine and S-adenosyl-L-methionine decarboxylases, is noted in synchronous cultures of the malarial parasite, Plasmodium falciparum. Polyamine biosynthesis reached peak values during the early trophozoite stage, whereas nucleic acid and protein synthesis occurred later in mature trophozoites. DL-alpha-Difluoromethylornithine, an irreversible inhibitor of ornithine decarboxylase, did not interfere with merozoite invasion and with ring-form development, but prevented the transformation of trophozoites to schizonts. Concomitantly, the synthesis of proteins and nucleic acids was significantly inhibited. These inhibitory effects could be readily reversed by the diamine putrescine. Macromolecular synthesis and schizogony were normal when 5-10 mM-DL-alpha-difluoromethylornithine and 0.1 mM-putrescine were added to the cultures simultaneously.


1990 ◽  
Vol 40 (2) ◽  
pp. 269-278 ◽  
Author(s):  
Mary Ann Zanner ◽  
William R. Galey ◽  
Joseph V. Scaletti ◽  
Jesper Brahm ◽  
David L. Vander Jagt

2012 ◽  
Vol 14 (7) ◽  
pp. 983-993 ◽  
Author(s):  
Mythili Aingaran ◽  
Rou Zhang ◽  
Sue KaYee Law ◽  
Zhangli Peng ◽  
Andreas Undisz ◽  
...  

1991 ◽  
Vol 278 (2) ◽  
pp. 521-525 ◽  
Author(s):  
K Kirk ◽  
H Y Wong ◽  
B C Elford ◽  
C I Newbold ◽  
J C Ellory

Human erythrocytes infected in vitro with the malaria parasite Plasmodium falciparum showed a markedly increased rate of choline influx compared with normal cells. Choline transport into uninfected cells (cultured in parallel with infected cells) obeyed Michaelis-Menten kinetics (Km approximately 11 microM). In malaria-parasite-infected cells there was an additional choline-transport component which failed to saturate at extracellular concentrations of up to 500 microM. This component was less sensitive than the endogenous transporter to inhibition by the Cinchona bark alkaloids quinine, quinidine, cinchonine and cinchonidine, but showed a much greater sensitivity than the native system to inhibition by piperine. The sensitivity of the induced choline transport to these reagents was similar to that of the malaria-induced (ouabain- and bumetanide-resistant) Rb(+)-transport pathway; however, the relative magnitudes of the piperine-sensitive choline and Rb+ fluxes in malaria-parasite-infected cells varied between cultures. This suggests either that the enhanced transport of the two cations was via functionally distinct (albeit pharmacologically similar) pathways, or that the transport was mediated by a pathway with variable substrate selectivity.


Sign in / Sign up

Export Citation Format

Share Document