host cell membrane
Recently Published Documents


TOTAL DOCUMENTS

316
(FIVE YEARS 124)

H-INDEX

45
(FIVE YEARS 5)

Viruses ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 1
Author(s):  
Siddharth Sinha ◽  
Benjamin Tam ◽  
San Ming Wang

The COVID-19 pandemic, caused by SARS-CoV-2, has led to catastrophic damage for global human health. The initial step of SARS-CoV-2 infection is the binding of the receptor-binding domain (RBD) in its spike protein to the ACE2 receptor in the host cell membrane. Constant evolution of SARS-CoV-2 generates new mutations across its genome including the coding region for the RBD in the spike protein. In addition to the well-known single mutation in the RBD, the recent new mutation strains with an RBD “double mutation” are causing new outbreaks globally, as represented by the delta strain containing RBD L452R/T478K. Although it is considered that the increased transmissibility of double-mutated strains could be attributed to the altered interaction between the RBD and ACE2 receptor, the molecular details remain to be elucidated. Using the methods of molecular dynamics simulation, superimposed structural comparison, free binding energy estimation, and antibody escaping, we investigated the relationship between the ACE2 receptor and the RBD double mutants of L452R/T478K (delta), L452R/E484Q (kappa), and E484K/N501Y (beta, gamma). The results demonstrated that each of the three RBD double mutants altered the RBD structure and enhanced the binding of the mutated RBD to ACE2 receptor. Together with the mutations in other parts of the virus genome, the double mutations increase the transmissibility of SARS-CoV-2 to host cells.


2021 ◽  
Author(s):  
Zhixian Liu ◽  
Zhilan Zhang ◽  
Qiushi Feng ◽  
Xiao-Sheng Wang

Abstract TMPRSS2, a key molecule for SARS-CoV-2 invading human host cells, has an association with cancer. However, its association with lung cancer remains unexplored. In five lung adenocarcinoma (LUAD) genomics datasets, we explored associations between TMPRSS2 expression and immune signatures, tumor progression phenotypes, and clinical prognosis in LUAD by the bioinformatics approach. We found that TMPRSS2 expression levels correlated negatively with the enrichment levels of both immune-stimulatory and immune-inhibitory signatures, while they correlated positively with the ratios of immune-stimulatory/immune-inhibitory signatures. It indicated that TMPRSS2 levels had a stronger negative correlation with immune-inhibitory than with immune-stimulatory signatures. TMPRSS2 downregulation correlated with increased proliferation, stemness, genomic instability, tumor progression, and worse survival in LUAD. We further validated that TMPRSS2 was downregulated with tumor progression in the LUAD dataset we collected. In vitro and in vivo experiments verified the association of TMPRSS2 deficiency with increased tumor cell proliferation and invasion and antitumor immunity in LUAD. Moreover, in vivo experiments demonstrated that TMPRSS2-knockdown tumors were more sensitive to BMS-1, an inhibitor of PD-1/PD-L1. In conclusion, TMPRSS2 is a tumor suppressor, while its downregulation is a positive biomarker of immunotherapy in LUAD. Our data provide a link between lung cancer and pneumonia caused by SARS-CoV-2 infection.


2021 ◽  
Vol 9 (12) ◽  
pp. 2592
Author(s):  
Federica Piro ◽  
Riccardo Focaia ◽  
Zhicheng Dou ◽  
Silvia Masci ◽  
David Smith ◽  
...  

Obligate intracellular parasites have evolved a remarkable assortment of strategies to scavenge nutrients from the host cells they parasitize. Most apicomplexans form a parasitophorous vacuole (PV) within the invaded cell, a replicative niche within which they survive and multiply. As well as providing a physical barrier against host cell defense mechanisms, the PV membrane (PVM) is also an important site of nutrient uptake that is essential for the parasites to sustain their metabolism. This means nutrients in the extracellular milieu are separated from parasite metabolic machinery by three different membranes, the host plasma membrane, the PVM, and the parasite plasma membrane (PPM). In order to facilitate nutrient transport from the extracellular environment into the parasite itself, transporters on the host cell membrane of invaded cells can be modified by secreted and exported parasite proteins to maximize uptake of key substrates to meet their metabolic demand. To overcome the second barrier, the PVM, apicomplexan parasites secrete proteins contained in the dense granules that remodel the vacuole and make the membrane permissive to important nutrients. This bulk flow of host nutrients is followed by a more selective uptake of substrates at the PPM that is operated by specific transporters of this third barrier. In this review, we recapitulate and compare the strategies developed by Apicomplexa to scavenge nutrients from their hosts, with particular emphasis on transporters at the parasite plasma membrane and vacuolar solute transporters on the parasite intracellular digestive organelle.


2021 ◽  
Author(s):  
Bingrui Li ◽  
Xin Luo ◽  
Kathleen M McAndrews ◽  
Raghu Kalluri

With the continuous evolution of SARS-CoV-2, variants of concern (VOCs) and their mutations are a focus of rapid assessment. Vital mutations in the VOC are found in spike protein, particularly in the receptor binding domain (RBD), which directly interacts with ACE2 on the host cell membrane, a key determinant of the binding affinity and cell entry. With the reporting of the most recent VOC, omicron, we performed amino acid sequence alignment of the omicron spike protein with that of the wild type and other VOCs. Although it shares several conserved mutations with other variants, we found that omicron has a large number of unique mutations. We applied the Hopp-Woods scale to calculate the hydrophilicity scores of the amino acid stretches of the RBD and the entire spike protein, and found 3 new hydrophilic regions in the RBD of omicron, implying exposure to water, with the potential to bind proteins such as ACE2 increasing transmissibility and infectivity. However, careful analysis reveals that most of the exposed domains of spike protein can serve as antigenic epitopes for generating B cell and T cell-mediated immune responses. This suggests that in the collection of polyclonal antibodies to various epitopes generated after multiple doses of vaccination, some can likely still bind to the omicron spike protein and the RBD to prevent severe clinical disease. In summary, while the omicron variant might result in more infectivity, it can still bind to a reasonable repertoire of antibodies generated by multiple doses of current vaccines likely preventing severe disease. Effective vaccines may not universally prevent opportunistic infections but can prevent the sequelae of severe disease, as observed for the delta variant. This might still be the case with the omicron variant, albeit, with increased frequency of infection.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7398
Author(s):  
Abu Hamza ◽  
Abdus Samad ◽  
Md. Ali Imam ◽  
Md. Imam Faizan ◽  
Anwar Ahmed ◽  
...  

The global burden of disease caused by a respiratory syncytial virus (RSV) is becoming more widely recognized in young children and adults. Heparan sulfate helps in attaching the virion through G protein with the host cell membrane. In this study, we examined the structural changes of ectodomain G protein (edG) in a wide pH range. The absorbance results revealed that protein maintains its tertiary structure at physiological and highly acidic and alkaline pH. However, visible aggregation of protein was observed in mild acidic pH. The intrinsic fluorescence study shows no significant change in the λmax except at pH 12.0. The ANS fluorescence of edG at pH 2.0 and 3.0 forms an acid-induced molten globule-like state. The denaturation transition curve monitored by fluorescence spectroscopy revealed that urea and GdmCl induced denaturation native (N) ↔ denatured (D) state follows a two-state process. The fluorescence quenching, molecular docking, and 50 ns simulation measurements suggested that heparan sulfate showed excellent binding affinity to edG. Our binding study provides a preliminary insight into the interaction of edG to the host cell membrane via heparan sulfate. This binding can be inhibited using experimental approaches at the molecular level leading to the prevention of effective host–pathogen interaction.


2021 ◽  
Vol 12 ◽  
Author(s):  
Damiano Buratto ◽  
Abhishek Saxena ◽  
Qun Ji ◽  
Guang Yang ◽  
Sergio Pantano ◽  
...  

SARS-CoV-2 infects humans and causes Coronavirus disease 2019 (COVID-19). The S1 domain of the spike glycoprotein of SARS-CoV-2 binds to human angiotensin-converting enzyme 2 (hACE2) via its receptor-binding domain, while the S2 domain facilitates fusion between the virus and the host cell membrane for entry. The spike glycoprotein of circulating SARS-CoV-2 genomes is a mutation hotspot. Some mutations may affect the binding affinity for hACE2, while others may modulate S-glycoprotein expression, or they could result in a virus that can escape from antibodies generated by infection with the original variant or by vaccination. Since a large number of variants are emerging, it is of vital importance to be able to rapidly assess their characteristics: while changes of binding affinity alone do not always cause direct advantages for the virus, they still can provide important insights on where the evolutionary pressure is directed. Here, we propose a simple and cost-effective computational protocol based on Molecular Dynamics simulations to rapidly screen the ability of mutated spike protein to bind to the hACE2 receptor and selected neutralizing biomolecules. Our results show that it is possible to achieve rapid and reliable predictions of binding affinities. A similar approach can be used to perform preliminary screenings of the potential effects of S-RBD mutations, helping to prioritize the more time-consuming and expensive experimental work.


Author(s):  
Ann-Kathrin Mix ◽  
Griseldis Goob ◽  
Erik Sontowski ◽  
Christof R. Hauck

AbstractPathogenic bacteria have evolved a variety of highly selective adhesins allowing these microbes to engage specific surface determinants of their eukaryotic host cells. Receptor clustering induced by the multivalent microorganisms will not only anchor the bacteria to the tissue, but will inevitably trigger host cell signaling. It has become clear, that these bacteria-initiated signaling events can be seen as a form of localized communication with host epithelial cells. Such a microscale communication can have immediate consequences in the form of changes in host cell membrane morphology or cytoskeletal organization, but can also lead to transcriptional responses and medium- and long-term alterations in cellular physiology. In this review, we will discuss several examples of this form of microscale communication between bacterial pathogens and mammalian host cells and try to delineate their downstream ramifications in the infection process. Furthermore, we will highlight recent findings that specialized pathogenic bacteria utilize the adhesin-based interaction to diffuse the short-range messenger molecule nitric oxide into the host tissue. While anti-adhesive strategies to disrupt the initial bacterial attachment have not yet translated into medical applications, the ability to interfere with the microscale communication emanating on the host side provides an unconventional approach for preventing infectious diseases.


Author(s):  
Nguyen Van Sang ◽  
Nguyen Thi Uyen

Type three secretion system (T3SS) is found exclusively in gram-negative pathogens such as Yersinia spp., Escherichia coli, Salmonella spp., Shigella spp., Pseudomonas spp., Vibrio parahaemolyticus, and Aeromonas hydrophila. The translocon pore of T3SS comprises major and minor translocator proteins that assemble to provide passage of effectors through the host cell membrane. Major translocator protein AopB from Aeromonas hydrophila plays an important role in translocon pore formation. Despite tremendous efforts, structural information regarding the C-terminus domain of major translocator AopB remains elusive. In this study, the DNA fragment encoding for the C-terminus domain of the AopB major translocator from Aeromonas hydrophila AH-1 was cloned in to pET-M expression vector and expressed in BL21 (DE3) host cells. The recombinant AopB-C-terminus domain was successfully purified using immobilized nickel affinity chromatography as a soluble form. Crosslinking analysis among AopB-C-terminus molecules in solution showed that this domain exists as a mixture of tetramer, trimer, dimer and monomer forms. The three-dimensional structure model of AopB-C-terminus oligomerization was built by SWISS-MODEL and PyMol. The oligomeric model of AopB-C-terminus can be used for structural studies of the AopB-C-terminus domain which can contribute to the elucidation of the structure of the type III secretion system.


2021 ◽  
Author(s):  
Siddharth Sinha ◽  
Benjamin Tam ◽  
San Ming Wang

ABSTRACTThe COVID-19 pandemics by SARS-CoV-2 causes catastrophic damage for global human health. The initial step of SARS-CoV-2 infection is the binding of the receptor-binding domain (RBD) in its spike protein to ACE2 receptor in host cell membrane. The evolving of SARS-CoV-2 constantly generates new mutations across its genome including RBD. Besides the well-known single mutation in RBD, the recent new mutation strains with RBD “double mutation” is causing new outbreaks globally, as represented by the delta strain containing RBD L452R/T478K. Although it is considered that the increased transmissibility of the double mutated strains could be attributed to the alteration of mutated RBD to ACE2 receptor, the molecular details remains to be unclear. Using the methods of molecular dynamics simulation, superimposed structural comparison, free binding energy estimation and antibody escaping, we investigated the relationship between ACE2 receptor and the RBD double mutant L452R/T478K (delta), L452R/E484Q (kappa) and E484K/N501Y (beta, gamma). The results demonstrated that each of the three RBD double mutants altered RBD structure, led to enhanced binding affinity of mutated RBD to ACE2 receptor, leading to increased transmissibility of SARS-CoV-2 to the host cells.


Cell Research ◽  
2021 ◽  
Author(s):  
Wei Hu ◽  
Yong Zhang ◽  
Panyu Fei ◽  
Tongtong Zhang ◽  
Danmei Yao ◽  
...  

AbstractThe outbreak of SARS-CoV-2 (SARS2) has caused a global COVID-19 pandemic. The spike protein of SARS2 (SARS2-S) recognizes host receptors, including ACE2, to initiate viral entry in a complex biomechanical environment. Here, we reveal that tensile force, generated by bending of the host cell membrane, strengthens spike recognition of ACE2 and accelerates the detachment of spike’s S1 subunit from the S2 subunit to rapidly prime the viral fusion machinery. Mechanistically, such mechano-activation is fulfilled by force-induced opening and rotation of spike’s receptor-binding domain to prolong the bond lifetime of spike/ACE2 binding, up to 4 times longer than that of SARS-S binding with ACE2 under 10 pN force application, and subsequently by force-accelerated S1/S2 detachment which is up to ~103 times faster than that in the no-force condition. Interestingly, the SARS2-S D614G mutant, a more infectious variant, shows 3-time stronger force-dependent ACE2 binding and 35-time faster force-induced S1/S2 detachment. We also reveal that an anti-S1/S2 non-RBD-blocking antibody that was derived from convalescent COVID-19 patients with potent neutralizing capability can reduce S1/S2 detachment by 3 × 106 times under force. Our study sheds light on the mechano-chemistry of spike activation and on developing a non-RBD-blocking but S1/S2-locking therapeutic strategy to prevent SARS2 invasion.


Sign in / Sign up

Export Citation Format

Share Document