hexose transporter
Recently Published Documents


TOTAL DOCUMENTS

171
(FIVE YEARS 16)

H-INDEX

37
(FIVE YEARS 2)

2021 ◽  
Vol 22 (11) ◽  
pp. 5963
Author(s):  
Qinfeng Yuan ◽  
Yaqin Yan ◽  
Muhammad Aamir Sohail ◽  
Hao Liu ◽  
Junbin Huang ◽  
...  

Colletotrichum higginsianum is an important hemibiotrophic plant pathogen that causes crucifer anthracnose worldwide. To date, some hexose transporters have been identified in fungi. However, the functions of hexose transporters in virulence are not clear in hemibiotrophic phytopathogens. In this study, we identified and characterized a new hexose transporter gene named ChHxt6 from a T-DNA insertion pathogenicity-deficient mutant G256 in C. higginsianum. Expression profiling analysis revealed that six ChHxt genes, ChHxt1 to ChHxt6, exhibited specific expression patterns in different infection phases of C. higginsianum. The ChHxt1 to ChHxt6 were separately deleted using the principle of homologous recombination. ChHxt1 to ChHxt6 deletion mutants grew normally on PDA plates, but only the virulence of ChHxt4 and ChHxt6 deletion mutants was reduced. ChHxt4 was required for fungal infection in both biotrophic and necrotrophic stages, while ChHxt6 was important for formation of necrotrophic hyphae during infection. In addition, ChHxts were functional in uptake of different hexoses, but only ChHxt6-expressing cells could grow on all five hexoses, indicating that the ChHxt6 was a central hexose transporter and crucial for hexose uptake. Site-directed mutation of T169S and P221L positions revealed that these two positions were necessary for hexose transport, whereas only the mutation Thr169 caused reduced virulence and defect in formation of necrotrophic hyphae. Taken together, ChHxt6 might regulate fungal virulence by modulating the utilization of hexose.


Author(s):  
Xiaoyu Shi ◽  
Meng Wei ◽  
Zihao Xu ◽  
Ying Liu ◽  
Mujia Zhang ◽  
...  

During the Plasmodium erythrocytic cycle, glucose is taken up by glucose transporters (GLUTs) in red blood cells (RBCs) and supplied to parasites via the Plasmodium hexose transporter. Here, we demonstrate that the glucose uptake pathway in infected RBCs (iRBCs) can be hijacked by vitamin C (Vc). GLUTs preferentially transport the oxidized form of Vc, which is subsequently reduced in the cytosol. Vc, which is expected to burden the intracellular reducing capacity, inhibits Plasmodium berghei and Plasmodium falciparum growth. Vc uptake is drastically increased in iRBCs, with a large proportion entering parasites. Increased absorption of Vc causes accumulation of reactive oxygen species, reduced ATP production, and elevated eryptosis in iRBCs and apoptosis in parasites. The level of oxidative stress induced by Vc is significantly higher in iRBCs than uninfected RBCs, not seen in chloroquine or artemisinin-treated iRBCs, and effective in inhibiting chloroquine or artemisinin-resistant parasites. These findings provide important insights into the drug sensitivity of Plasmodium.


2021 ◽  
Author(s):  
Jiang Wang ◽  
Ya-Chi Yu ◽  
Ye Li ◽  
Li-Qing Chen

AbstractGalactose is an abundant and essential sugar used for the biosynthesis of many macromolecules in different organisms, including plants. Galactose metabolism is tightly and finely controlled since excess galactose and derivatives are inhibitory. In Arabidopsis, root growth and pollen germination were strongly inhibited upon excess galactose. However, the mechanism of galactose induced inhibition during pollen germination remains obscure. In this study, we characterized AtSWEET5 as a glucose and galactose plasma-membrane transporter localized in the pollen. SWEET5 protein level start to accumulate since tricellular stage of pollen development and peaked in mature pollen before rapidly declining after pollen was germinated. SWEET5 levels are responsible for the dosage-dependent sensitivity of galactose and GALK is essential for the inhibitory effects of galactose during pollen germination. The unexpected observation that GALK is required for efficient galactose uptake in pollen may reveal an unknown regulatory mechanism for galactose transporters. Overall, SWEET5 and GALK contribute to the maintenance of galactose metabolic homeostasis during pollen germination, and galactose transport is positively regulated by GALK. The study of SWEET5 upon galactose condition also suggests SWEET5 is a major low-affinity hexose transporter at the early stage of pollen germination.One-sentence summarySWEET5 mediates pollen galactose sensitivity via GALK that is required for efficient galactose uptake in pollen during pollen germination.


2021 ◽  
Vol 118 (3) ◽  
pp. e2017749118
Author(s):  
Jian Huang ◽  
Yafei Yuan ◽  
Na Zhao ◽  
Debing Pu ◽  
Qingxuan Tang ◽  
...  

Artemisinin-resistant malaria parasites have emerged and have been spreading, posing a significant public health challenge. Antimalarial drugs with novel mechanisms of action are therefore urgently needed. In this report, we exploit a “selective starvation” strategy by inhibiting Plasmodium falciparum hexose transporter 1 (PfHT1), the sole hexose transporter in P. falciparum, over human glucose transporter 1 (hGLUT1), providing an alternative approach to fight against multidrug-resistant malaria parasites. The crystal structure of hGLUT3, which shares 80% sequence similarity with hGLUT1, was resolved in complex with C3361, a moderate PfHT1-specific inhibitor, at 2.3-Å resolution. Structural comparison between the present hGLUT3-C3361 and our previously reported PfHT1-C3361 confirmed the unique inhibitor binding-induced pocket in PfHT1. We then designed small molecules to simultaneously block the orthosteric and allosteric pockets of PfHT1. Through extensive structure–activity relationship studies, the TH-PF series was identified to selectively inhibit PfHT1 over hGLUT1 and potent against multiple strains of the blood-stage P. falciparum. Our findings shed light on the next-generation chemotherapeutics with a paradigm-shifting structure-based design strategy to simultaneously target the orthosteric and allosteric sites of a transporter.


2021 ◽  
Vol 19 (14) ◽  
pp. 3241-3254
Author(s):  
Richard Yuen ◽  
Michael Wagner ◽  
Susan Richter ◽  
Jennifer Dufour ◽  
Melinda Wuest ◽  
...  

We describe the synthesis and analysis of novel different glucose-based dual probes for tandem PET and fluorescent imaging of facilitated hexose transporter GLUT1 in breast cancer cells.


2020 ◽  
Author(s):  
Jian Huang ◽  
Yafei Yuan ◽  
Na Zhao ◽  
Debing Pu ◽  
Qingxuan Tang ◽  
...  

AbstractArtemisinin-resistant malaria parasites have emerged and been spreading, posing a significant public health challenge. Anti-malarial drugs with novel mechanisms of action are therefore urgently needed. In this report, we exploit a “selective starvation” strategy by selectively inhibiting Plasmodium falciparum hexose transporter 1 (PfHT1), the sole hexose transporter in Plasmodium falciparum, over human glucose transporter 1 (hGLUT1), providing an alternative approach to fight against multidrug-resistant malaria parasites. Comparison of the crystal structures of human GLUT3 and PfHT1 bound to C3361, a PfHT1-specific moderate inhibitor, revealed an inhibitor binding-induced pocket that presented a promising druggable site. We thereby designed small-molecules to simultaneously block the orthosteric and allosteric pockets of PfHT1. Through extensive structure-activity relationship (SAR) studies, the TH-PF series was identified to selectively inhibit PfHT1 over GLUT1 and potent against multiple strains of the blood-stage P. falciparum. Our findings shed light on the next-generation chemotherapeutics with a paradigm-shifting structure-based design strategy to simultaneously targeting the orthosteric and allosteric sites of a transporter.Significance statementBlocking sugar uptake in P. falciparum by selectively inhibiting the hexose transporter PfHT1 kills the blood-stage parasites without affecting the host cells, indicating PfHT1 as a promising therapeutic target. Here, we report the development of novel small-molecule inhibitors that are selectively potent to the malaria parasites over human cell lines by simultaneously targeting the orthosteric and the allosteric binding sites of PfHT1. Our findings established the basis for the rational design of next-generation anti-malarial drugs.


Sign in / Sign up

Export Citation Format

Share Document