scholarly journals A monoclonal gammopathy precedes multiple myeloma in most patients

Blood ◽  
2009 ◽  
Vol 113 (22) ◽  
pp. 5418-5422 ◽  
Author(s):  
Brendan M. Weiss ◽  
Jude Abadie ◽  
Pramvir Verma ◽  
Robin S. Howard ◽  
W. Michael Kuehl

Preexisting plasma cell disorders, monoclonal gammopathy of undetermined significance, or smoldering myeloma are present in at least one-third of multiple myeloma patients. However, the proportion of patients with a preexisting plasma cell disorder has never been determined by laboratory testing on prediagnostic sera. We cross-referenced our autologous stem cell transplantation database with the Department of Defense Serum Repository. Serum protein electrophoresis, immunofixation electrophoresis, and serum free light-chain analysis were performed on all sera collected 2 or more years before diagnosis to detect a monoclonal gammopathy (M-Ig). In 30 of 90 patients, 110 prediagnostic samples were available from 2.2 to 15.3 years before diagnosis. An M-Ig was detected initially in 27 of 30 patients (90%, 95% confidence interval, 74%-97%); by serum protein electrophoresis and/or immunofixation electrophoresis in 21 patients (77.8%), and only by serum free light-chain analysis in 6 patients (22.2%). Four patients had only one positive sample within 4 years before diagnosis, with all preceding sera negative. All 4 patients with light-chain/nonsecretory myeloma evolved from a light-chain M-Ig. A preexisting M-Ig is present in most multiple myeloma patients before diagnosis. Some patients progress rapidly through a premalignant phase. Light-chain detected M-Ig is a new entity that requires further study.

Author(s):  
Maria A.V. Willrich ◽  
Jerry A. Katzmann

AbstractMonoclonal immunoglobulins are markers of plasma cell proliferative diseases and have been described as the first (and perhaps best) serological tumor marker. The unique structure of each monoclonal protein makes them highly specific for each plasma cell clone. The difficulties of using monoclonal proteins for diagnosing and monitoring multiple myeloma, however, stem from the diverse disease presentations and broad range of serum protein concentrations and molecular weights. Because of these challenges, no single test can confidently diagnose or monitor all patients. Panels of tests have been recommended for sensitivity and efficiency. In this review we discuss the various disease presentations and the use of various tests such as protein electrophoresis and immunofixation electrophoresis as well as immunoglobulin quantitation, free light chain quantitation, and heavy-light chain quantitation by immuno-nephelometry. The choice of tests for inclusion in diagnostic and monitoring panels may need to be tailored to each patient, and examples are provided. The panel currently recommended for diagnostic screening is serum protein electrophoresis, immunofixation electrophoresis, and free light chain quantitation.


2005 ◽  
Vol 11 (24) ◽  
pp. 8706-8714 ◽  
Author(s):  
Mohammad R. Nowrousian ◽  
Dieter Brandhorst ◽  
Christiane Sammet ◽  
Michaela Kellert ◽  
Rainer Daniels ◽  
...  

Author(s):  
Stephen J. Harding ◽  
Graham P. Mead ◽  
Arthur R. Bradwell ◽  
Annie M. Berard

Abstract: Protein and immunofixation electrophoresis of serum and urine are established as diagnostic aids for identifying monoclonal gammopathies. However, many patient sera sent to laboratories are not accompanied by urine samples and recent reports suggest the use of serum free light chain (sFLC) analysis in combination with serum protein electrophoresis (SPE) and immunofixation electrophoresis (IFE) could eliminate the need for urinalysis. The aim of the study was to assess the utility of sFLC measurement in addition to serum protein electrophoresis in the identification of patients with B-cell malignancies.: A total of 952 serum samples were analysed by serum protein electrophoresis and those with abnormal bands were analysed by immunofixation. sFLCs were measured in a retrospective manner by automated assay.: In our study of 952 patient sera, it was found that FLC analysis identified 23 additional cases of B-cell malignancies which were missed by SPE.: The additional malignancies identified by sFLC analysis add support for its inclusion in the routine screening protocol for B-cell malignancies.Clin Chem Lab Med 2009;47:302–4.


2017 ◽  
Vol 142 (4) ◽  
pp. 507-515 ◽  
Author(s):  
Jonathan R. Genzen ◽  
David L. Murray ◽  
Gyorgy Abel ◽  
Qing H. Meng ◽  
Richard J. Baltaro ◽  
...  

Context.— Serum tests used for the screening and diagnosis of monoclonal gammopathies include serum protein electrophoresis (SPE; agarose gel or capillary zone), immunofixation (IFE) and immunosubtraction capillary electrophoresis, serum free light chains, quantitative immunoglobulins, and heavy/light–chain combinations. Urine protein electrophoresis and urine IFE may also be used to identify Bence-Jones proteinuria. Objective.— To assess current laboratory practice for monoclonal gammopathy testing. Design.— In April 2016, a voluntary questionnaire was distributed to 923 laboratories participating in a protein electrophoresis proficiency testing survey. Results.— Seven hundred seventy-four laboratories from 38 countries and regions completed the questionnaire (83.9% response rate; 774 of 923). The majority of participants (68.6%; 520 of 758) used agarose gel electrophoresis as their SPE method, whereas 31.4% (238 of 758) used capillary zone electrophoresis. The most common test approaches used in screening were SPE with reflex to IFE/immunosubtraction capillary electrophoresis (39.3%; 299 of 760); SPE only (19.1%; 145 of 760); SPE and IFE or immunosubtraction capillary electrophoresis (13.9%; 106 of 760); and SPE with IFE, serum free light chain, and quantitative immunoglobulins (11.8%; 90 of 760). Only 39.8% (305 of 767) of laboratories offered panel testing for ordering convenience. Although SPE was used by most laboratories in diagnosing new cases of myeloma, when laboratories reported the primary test used to follow patients with monoclonal gammopathy, only 55.7% (403 of 724) chose SPE, with the next most common selections being IFE (18.9%; 137 of 724), serum free light chain (11.7%; 85 of 724), and immunosubtraction capillary electrophoresis (2.1%; 15 of 724). Conclusions.— Ordering and testing practices for the screening and diagnosis of monoclonal gammopathy vary widely across laboratories. Improving utilization management and report content, as well as recognition and development of laboratory-directed testing guidelines, may serve to enhance the clinical value of testing.


Sign in / Sign up

Export Citation Format

Share Document