b cell malignancies
Recently Published Documents


TOTAL DOCUMENTS

1161
(FIVE YEARS 299)

H-INDEX

65
(FIVE YEARS 11)

Author(s):  
Dieke J. van Rees ◽  
Maximilian Brinkhaus ◽  
Bart Klein ◽  
Paul Verkuijlen ◽  
Anton T.J. Tool ◽  
...  

Anti-CD20 antibodies, like rituximab, are broadly used to treat B cell malignancies. These antibodies can induce various effector functions, including immune cell-mediated antibody-dependent cellular cytotoxicity (ADCC). Neutrophils can induce ADCC towards solid cancer cells by trogoptosis, a cytotoxic mechanism known to be dependent on trogocytosis. However, neutrophils appear incapable of killing rituximab-opsonized B lymphoma cells. Nevertheless, neutrophils do trogocytose rituximab-opsonized B lymphoma cells, yet this only reduces CD20 surface expression, and is thought to render tumor cells therapeutically resistant to further rituximab-dependent destruction. Here, we demonstrate that resistance of B lymphoma cells towards neutrophil killing can be overcome by a combination of CD47-SIRPα checkpoint blockade and sodium stibogluconate (SSG), an anti-leishmanial drug and documented inhibitor of the tyrosine phosphatase SHP-1. SSG enhanced neutrophil-mediated ADCC of solid tumor cells, but enabled B lymphoma cell trogoptotic killing, by turning trogocytosis from a resistance-contributing mechanism into a cytotoxic anti-cancer one. The killing in the presence of SSG required both antibody opsonization of the target cells, as well as disruption of CD47-SIRPα interactions. These results provide a more detailed understanding of the role of neutrophil trogocytosis in antibody-mediated destruction of B cells and clues on how to further optimize antibody therapy of B cell malignancies.


Author(s):  
Saurabh Dahiya ◽  
Tim Luetkens ◽  
Forat Lutfi ◽  
Stephanie V. Avila ◽  
Thierry Iraguha ◽  
...  

2021 ◽  
pp. gr.276042.121
Author(s):  
Aneta Mikulasova ◽  
Daniel Kent ◽  
Marco Trevisan-Herraz ◽  
Nefeli Karataraki ◽  
Kent T.M Fung ◽  
...  

Chromosomal translocations are important drivers of hematological malignancies whereby proto-oncogenes are activated by juxtaposition with super-enhancers, often called enhancer hijacking. We analysed the epigenomic consequences of rearrangements between the super-enhancers of the immunoglobulin heavy locus (IGH) and proto-oncogene CCND1 that are common in B cell malignancies. By integrating BLUEPRINT epigenomic data with DNA breakpoint detection, we characterised the normal chromatin landscape of the human IGH locus and its dynamics after pathological genomic rearrangement. We detected an H3K4me3 broad domain (BD) within the IGH locus of healthy B cells that was absent in samples with IGH-CCND1 translocations. The appearance of H3K4me3-BD over CCND1 in the latter was associated with overexpression and extensive chromatin accessibility of its gene body. We observed similar cancer-specific H3K4me3-BDs associated with super-enhancer hijacking of other common oncogenes in B cell (MAF, MYC and FGFR3/NSD2) and in T-cell malignancies (LMO2, TLX3 and TAL1). Our analysis suggests that H3K4me3-BDs can be created by super-enhancers and supports the new concept of epigenomic translocation, where the relocation of H3K4me3-BDs from cell identity genes to oncogenes accompanies the translocation of super-enhancers.


Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 9
Author(s):  
Christopher J. Kirk ◽  
Tony Muchamuel ◽  
Jinhai Wang ◽  
R. Andrea Fan

Inhibitors of the proteolytic activity of the 20S proteasome have transformed the treatment of multiple B-cell malignancies. These agents have also been employed with success in the treatment of patients with autoimmune diseases and immune-mediated disorders. However, new agents are needed to fully unlock the potential of proteasome inhibitors as immunomodulatory drugs. The discovery that selective inhibitors of the immunoproteasome possess broad anti-inflammatory activity in preclinical models has led to the progression of multiple compounds to clinical trials. This review focuses on the anti-inflammatory potential of immunoproteasome inhibition and the early development of KZR-616, the first selective inhibitor of the immunoproteasome to reach clinical testing.


2021 ◽  
Author(s):  
Abigail K. Grosskopf ◽  
Louai Labanieh ◽  
Dorota D. Klysz ◽  
Gillie Roth ◽  
Peng Xu ◽  
...  

Adoptive cell therapy (ACT) has proven to be highly effective in treating blood cancers such as B cell malignancies, but traditional approaches to ACT are poorly effective in treating the multifarious solid tumors observed clinically. Locoregional cell delivery methods have shown promising results in treating solid tumors compared to standard intravenous delivery methods, but the approaches that have been described to date have several critical drawbacks ranging from complex manufacturing and poor modularity to challenging adminstration. In this work, we develop a simple-to-implement self-assembled and injectable hydrogel material for the controlled co-delivery of CAR-T cells and stimulatory cytokines that improves treatment of solid tumors. We evaluate a range of hydrogel formulations to optimize the creation of a transient inflammatory niche that affords sustained exposure of CAR-T cells and cytokines. This facile approach yields increased CAR-T cell expansion, induces a more tumor-reactive CAR-T phenotype, and improves efficacy in treating solid tumors in mice.


Sign in / Sign up

Export Citation Format

Share Document