The C-Terminal Zinc Finger of GATA2 Is Necessary for Normalization of Aberrant Myelomonocytic Differentiation Induced by Activating PTPN11 Mutations.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3177-3177
Author(s):  
Zhenyun Yang ◽  
Cara S. Voorhorst ◽  
Leila Ndong ◽  
Fuqin Yin ◽  
Takako Kondo ◽  
...  

Abstract Juvenile myelomonocytic leukemia (JMML) is a myeloproliferative disorder characterized by overproduction of myelomonocytic cells. Activating mutations of PTPN11, which encodes the protein tyrosine phosphatase, Shp2, are found in 35% of JMML patients. Murine bone marrow low density mononuclear cells (LDMNCs) expressing activating Shp2 mutants preferentially undergo myelomonocytic differentiation despite being subjected to conditions that typically support only mast cell development. Evaluation of hematopoietic cell-specific transcription factor expression revealed that GATA2 expression, needed for mast cell differentiation, is dramatically reduced, while, surprisingly, PU.1 expression is unchanged in cells expressing activating Shp2 mutants. In addition to lineage-specific transcription factors such as PU.1, however, c-jun also promotes monocytic differentiation by functioning as a co-activator of PU.1. Thus, we hypothesized that activating Shp2 mutations (Shp2D61Y or Shp2 E76K) induce increased c-jun expression permitting, in collaboration with PU.1, excessive monocytic differentiation and reduced GATA2 expression in hematopoietic progenitors. As a corollary, we hypothesized that ectopic expression of GATA2, but not of GATA2 lacking the C-terminal zinc finger (GATA2del330–407), which is needed for disruption of the PU.1-c-jun interaction, would normalize aberrant myelomonocytic differentiation induced by activating Shp2 mutants. Consistent with our hypothesis, quantitative RT-PCR studies revealed 5-fold higher c-jun levels in cells expressing Shp2D61Y or Shp2E76K compared to cells expressing WT Shp2. We next utilized retroviral co-transduction of murine bone marrow LDMNCs to generate six groups: pMIEG3-Shp2WT plus pCD4 (empty vector); pMIEG3-Shp2WT plus pCD4-GATA2; pMIEG3-Shp2WT plus pCD4-GATA2del330-407; pMIEG3-Shp2E76K plus pCD4; pMIEG3-Shp2E76K plus pCD4-GATA2; and pMIEG3-Shp-2E76K plus pCD4-GATA2del330-407. Transduced cells were stained with anti-human CD4 conjugated to allophycocyanin (APC), sorted for EGFP+APC+ cells, and plated into progenitor assays. Colonies were scored for colony forming unit (CFU)-granulocyte-macrophage (GM), monocyte (M), granulocyte (G), and granulocyte-erythroid-monocyte-megakaryocyte (GEMM). As predicted, cells co-transduced with activating Shp2E76K plus pCD4 produced significantly more CFU-M than cells co-transduced with WT Shp2 plus pCD4. Upon co-transduction with GATA2, the number of CFU-M generated from Shp2E76K-expressing cells was significantly reduced and was similar to that observed in cells expressing WT Shp2. In contrast, co-transduction of GATA2del330-407 failed to normalize the number of CFU-M produced by Shp2E76K-expressing cells. Quantitative RT-PCR verified ectopic GATA2 and GATA2del330-407 expression in the co-transduced cells. These findings demonstrate that restoration of GATA2 expression normalizes the propensity toward monocytic differentiation induced by Shp2E76K. The lack of correction conferred by GATA2del330-407 in combination with the observed increased c-jun expression support a model in which GATA2 and c-jun compete for binding to PU.1 to direct cell differentiation decisions in hematopoietic progenitors bearing activating Shp2 mutants. Collectively, these findings imply that normalization of transcription factor expression may provide a novel approach to differentiation-mediated therapy in JMML.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3519-3519
Author(s):  
Rebecca J. Chan ◽  
Cara S. Voorhorst ◽  
Takako Kondo ◽  
Eri Hashino

Abstract Juvenile myelomonocytic leukemia (JMML) is a lethal disease of young children characterized by pathologic overproduction of myelomonocytic cells. Mutations in PTPN11, which encodes protein tyrosine phosphatase, Shp-2, occur in 35% of JMML patients. We demonstrated that macrophage progenitors expressing activating PTPN11 mutants hyperproliferate in response to GM-CSF(Chan et al., Blood105, 2005). Based on these findings and the the clinical phenotype of JMML, we hypothesized that in addition to inducing hyperproliferation, activating PTPN11 mutants promote commitment to the myelomonocytic lineage at the expense of other myeloid lineages. To test this hypothesis, we compared the ability of cells expressing either WT or mutant Shp-2 to undergo mast cell differentiation. WT and three mutant Shp-2 cDNAs (E76K, D61V, and D61Y, commonly observed in JMML patients) were subcloned into the retroviral vector pMIEG3 in tandem with EGFP. Murine bone marrow low density mononuclear cells (LDMNCs) or lineage depleted (lin-/lo) cells were transduced, sorted for EGFP positive cells, and cultured in IL-3-containing media commonly used for mast cell development. Morphologically, LDMNCs expressing the activating PTPN11 mutants demonstrated increased adherence to the tissue culture plate, suggestive of monocyte/macrophage differentiation. Phenotypic analysis using flow cytometry demonstrated a significantly higher level of Mac-1 and F4/80 on cells expressing the mutants (Mac-1: MIEG3 24.6+/−8.9, WT Shp-2 19.3+/−7.9, E76K 91.7+/−013, D61V 84.7+/−5, and D61Y 88.5+/−3, n=4, p<0.001 for E76K, D61Y, or D61V v. MIEG3 or WT Shp-2; F4/80: MIEG3 8+/−0.6, WT Shp-2 9.9+/−0.9, E76K 66.7+/−9.7, D61V 60.5+/−4, and D61Y 56.5+/−1.4, n=2, p≤0.03 for E76K, D61Y, or D61V v. MIEG3 or WT Shp-2). In contrast, a significantly lower level of c-kit was expressed on cells bearing the PTPN11 mutants (c-kit: MIEG3 65+/−12.6, WT Shp-2 74.8+/−9.3, E76K 18.6+/−8.1, D61V 26.8+/−8.2, D61Y 19.1+/−8.1, n=4, p≤0.05 for E76K, D61Y, or D61V v. MIEG3 or WT Shp-2. Statistics conducted using Students t test). To test more specifically whether activating PTPN11 mutants alter hematopoietic progenitor differentiation, lin-/lo cells were transduced with MIEG3, WT Shp-2, or D61Y. Similar to that observed with LDMNCs, lin-/lo cells expressing D61Y preferentially adhered to the tissue culture plate and expressed significantly higher levels of F4/80 and Mac-1 following culture in IL-3. These data suggest that activating PTPN11 mutants vary hematopoietic cell fate specification and imply alterations in hematopoietic lineage-specific transcription factor expression. PU.1 is required for both macrophage and mast cell differentiation while GATA-2 is dispensible for macrophage development. We predicted elevated PU.1 and reduced GATA-2 expression in cells bearing activating PTPN11 mutants, thus accounting for preferential macrophage differentiation. Using quantitative RT-PCR, a modest elevation of PU.1 expression was found in cells expressing the activating PTPN11 mutants. However, GATA-2 expression in cells bearing the activating PTPN11 mutants was only 5–10% of that in cells transduced with MIEG3 or WT Shp-2, suggesting that Shp-2 gain-of-function mutants alter signaling pathways such that GATA-2 expression is diminished and monocytic differentiation is permitted at the expense of mast cell development. These data imply that normalization of molecular aberrancies at the transcription factor level may provide novel therapeutic tactics for the improved treatment of JMML.


2020 ◽  
Vol 130 (3) ◽  
pp. 1377-1391 ◽  
Author(s):  
Alessia Oppezzo ◽  
Julie Bourseguin ◽  
Emilie Renaud ◽  
Patrycja Pawlikowska ◽  
Filippo Rosselli

2002 ◽  
Vol 24 (3) ◽  
pp. 282-284 ◽  
Author(s):  
Roy King ◽  
Alan C. Peterson ◽  
Kirk C. Peterson ◽  
Martin C. Mihm ◽  
David E. Fisher ◽  
...  

2015 ◽  
Vol 28 (1) ◽  
pp. 181-201 ◽  
Author(s):  
Naohiko Ohama ◽  
Kazuya Kusakabe ◽  
Junya Mizoi ◽  
Huimei Zhao ◽  
Satoshi Kidokoro ◽  
...  

2005 ◽  
Vol 78 (3) ◽  
pp. 605-611 ◽  
Author(s):  
Junko Noguchi ◽  
Etsushi Kuroda ◽  
Uki Yamashita

Allergy ◽  
2007 ◽  
Vol 62 (12) ◽  
pp. 1429-1438 ◽  
Author(s):  
J. A. Cornejo-Garcia ◽  
T. D. Fernandez ◽  
M. J. Torres ◽  
M. Carballo ◽  
I. Hernan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document