Proteome Analysis of the Proteins Associated with All-Trans Retinoic Acid Resistance in Acute Promyelocytic Leukemia Cells

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 5042-5042
Author(s):  
Pengcheng He ◽  
Mei Zhang ◽  
Jun Qi ◽  
Xiaoning Wang ◽  
Jieying Xi ◽  
...  

Abstract Although 90% patients with untreated acute promyelocytic leukemia(APL) obtain complete remission because of the usage of all-trans retinoic acid(ATRA), patients with ATRA-resistance are increased gradually. ATRA-resistance has become one of the main causes which affect the long-term therapeutic efficacy of APL. The mechanisms of ATRA-resistance are complex, which probably involve the metabolism of ATRA, abnormal expression of cellular retinoic acid binding protein(CRABP) and P-glycoprotein(P-gp), mutation of RARα and aberration translocation of APL. However, in these previous researches, it was one or a few proteins but not the entirety proteins that were emphasized on the mechanisms of ATRA-resistance. Comparative proteomics can analyze the entire protein expression in cells in whole and has the superiority in screening the drug-resistance proteins differentially expressed. In order to investigate the mechanisms of ATRA-resistance in APL in whole, we compared and analyzed the protein expression profiles between MR2 cells(APL cell line with ATRA-resistance) and NB4 cells(APL cell line with ATRA-sensitiveness) by comparative proteomics. After the total proteins of MR2 cells and NB4 cells were extracted respectively, they were separated by two-dimensional electrophoresis(2-DE). The differences in proteome profile between MR2 cells and NB4 cells analyzed by ImageMaster™ 2D Platinum software. The average protein spots in 2-DE maps of MR2 and NB4 cells were 1160±51 and 1068±33 respectively. 8 protein spots were selected to be identified by Matrix-assisted laser desorption/ionization time of flight-mass spectrometry (MALDI-TOF-MS), in which the quantity of the protein differentially expressed was more than two times(≥2 or ≤0.5) between MR2 and NB4 cells’ 2-DE map. They were all successfully identified and their definite information was obtained. Among them, 6 proteins were probably involved in the mechanisms of ATRA-resistance in APL and they were Cofilin-1, Elongation factor 1-beta (EF-1β), Tropomyosin isoform(TM), High mobility group protein B1(HMGB1), Ran-specific GTPase-activating protein (RanGAP1) and Galectin-1. Moreover, so far there was no related report on the roles of HMGB1, RanGAP1 and Galectin-1 in the mechanisms of ATRA-resistance in APL. These differential proteins identified provide the new clues for us to further elucidate the mechanisms of ATRA-resistance from multiple factor.

2002 ◽  
Vol 26 (12) ◽  
pp. 1097-1103 ◽  
Author(s):  
Takeo Hirano ◽  
Masahiro Kizaki ◽  
Kuniki Kato ◽  
Fuminori Abe ◽  
Natsuko Masuda ◽  
...  

Blood ◽  
2001 ◽  
Vol 97 (1) ◽  
pp. 264-269 ◽  
Author(s):  
Yongkui Jing ◽  
Long Wang ◽  
Lijuan Xia ◽  
Guo-qiang Chen ◽  
Zhu Chen ◽  
...  

Abstract All-trans retinoic acid (tRA) and arsenic trioxide (As2O3) induce non–cross-resistant complete clinical remission in patients with acute promyelocytic leukemia with t(15;17) translocation and target PML-RARα, the leukemogenic protein, by different pathways suggesting a possible therapeutic synergism. To evaluate this possibility, this study examined the effect of As2O3 on tRA-induced differentiation and, conversely, the effect of tRA on As2O3-induced apoptosis. As2O3 at subapoptotic concentrations (0.5 μM) decreased tRA-induced differentiation in NB4 cells but synergized with atRA to induce differentiation in tRA-resistant NB4 subclones MR-2 and R4 cells as measured by nitroblue tetrazolium reduction and tRA-inducible genes (TTGII, RARβ, RIG-E). tRA cleaved PML-RARα into distinct fragments in NB4 but not in tRA-resistant MR-2 or R4 cells, whereas As2O3 completely degraded PML-RARα in all 3 cell lines. As2O3-induced apoptosis was decreased by tRA pretreatment of NB4 cells but not of R4 cells and was associated with a strong induction of Bfl-1/A1 expression, a Bcl-2 protein family member. Severe combined immunodeficient mice bearing NB4 cells showed an additive survival effect after sequential treatment, but a toxic effect was observed after simultaneous treatment with tRA and As2O3. These data suggest that combined As2O3 and tRA treatment may be more effective than single agents in tRA-resistant patients. Although in vitro data do not always translate to in vivo response, toxicity and potential drug antagonism may be diminished by decreasing the concentration of As2O3 when given at the same time with therapeutic levels of tRA.


Blood ◽  
2010 ◽  
Vol 116 (19) ◽  
pp. 3933-3943 ◽  
Author(s):  
Krisztián Csomós ◽  
István Német ◽  
László Fésüs ◽  
Zoltán Balajthy

Abstract Treatment of acute promyelocytic leukemia (APL) with all-trans-retinoic acid (ATRA) results in terminal differentiation of leukemic cells toward neutrophil granulocytes. Administration of ATRA leads to massive changes in gene expression, including down-regulation of cell proliferation–related genes and induction of genes involved in immune function. One of the most induced genes in APL NB4 cells is transglutaminase 2 (TG2). RNA interference–mediated stable silencing of TG2 in NB4 cells (TG2-KD NB4) coupled with whole genome microarray analysis revealed that TG2 is involved in the expression of a large number of ATRA-regulated genes. The affected genes participate in granulocyte functions, and their silencing lead to reduced adhesive, migratory, and phagocytic capacity of neutrophils and less superoxide production. The expression of genes related to cell-cycle control also changed, suggesting that TG2 regulates myeloid cell differentiation. CC chemokines CCL2, CCL3, CCL22, CCL24, and cytokines IL1B and IL8 involved in the development of differentiation syndrome are expressed at significantly lower level in TG2-KD NB4 than in wild-type NB4 cells upon ATRA treatment. Based on our results, we propose that reduced expression of TG2 in differentiating APL cells may suppress effector functions of neutrophil granulocytes and attenuate the ATRA-induced inflammatory phenotype of differentiation syndrome.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4726-4726
Author(s):  
Pengcheng He ◽  
Mei Zhang ◽  
Xiaoning Wang ◽  
Huaiyu Wang ◽  
Jieying Xi ◽  
...  

Abstract Although all-trans retinoic acid(ATRA) provides complete remission in 90% patients with untreated acute promyelocytic leukemia(APL), it becomes ineffective to quite a few APL patients who have received ATRA before when their disease relapsed and used ATRA again. Arsenic trioxide(ATO) can make APL patients with ATRA-resistance obtain complete remission again by inducing APL cells apoptosis. However, the molecular mechanisms of apoptosis in ATRA-resistance APL cells induced by ATO remain unclear. For this reason, we take the apoptotic MR2 cells (APL cell line with ATRA-resistance) induced by ATO as a model, to screen and identify the proteins related with ATO-induced apoptosis by comparative proteomics. After MR2 cells were dyed with annexin V and PI staining, the percentage of the apoptotic MR2 cells induced by 1.0μmol/L ATO for 0h, 6h, 12h, 24h and 48h respectively was detected by Flow cytometry. The results showed that the majority of the apoptotic cells were in the earlier and later stage of apoptosis respectively, when MR2 cells were treated with ATO for 24 and 48 hours in sequence. The total proteins of MR2 cells of the control group, the earlier stages apoptosis group and the later stages apoptosis group were separated by two-dimensional electrophoresis(2-DE) respectively. Then, the differences in proteome profile among three groups were analyzed by ImageMaster™ 2D Platinum software. 14 protein pots were selected to be identified by Matrix-assisted laser desorption/ionization time of flight-mass spectrometry(MALDI-TOF-MS), in which the quantity of the protein differentially expressed was more than two times(≥2 or ≤0.5) among MR2-0h, MR2-24h and MR2-48h cells’ 2-DE map. However, only 11 proteins were successfully identified and their definite information was obtained. Among them, there were 8 proteins that were all probably involved in the mechanisms of apoptosis in MR2 cells and they were Calreticulin(CRT), Heat shock 70 kDa protein(HSP70), High mobility group protein B1(HMGB1), Ran-specific GTPase-activating protein(RanGAP1), Elongation factor 1-beta(EF-1β), Beta-tubulin, Cofilin-1, and Prolyl 4-hydroxylase(P4H) respectively. CRT was probably related with the early stage of apoptosis in MR2 cells, while RanGAP1 and HSP70 might related with the late stage of apoptosis in MR2 cells. Moreover, so far there was no related report on the roles of CRT, HMGB1, RanGAP1, cofilin-1 and beta-tubulin in the mechanisms of APL cells apoptosis. These differential proteins identified provide the new clues for further researching the molecular mechanisms of apoptosis in the ATRA-resistance APL cells induced by ATO.


Blood ◽  
1993 ◽  
Vol 82 (5) ◽  
pp. 1573-1577 ◽  
Author(s):  
S Dermime ◽  
F Grignani ◽  
M Clerici ◽  
C Nervi ◽  
G Sozzi ◽  
...  

The mechanism(s) by which acute promyelocytic leukemia (APL) cells acquire resistance to all-trans retinoic acid (ATRA) is poorly understood. We describe here an APL cell line, named NB4.306, that shows resistance to the anti-proliferative action of ATRA. This cell line is also operationally resistant to most ATRA-induced phenotypic modifications (CD11b, CD11c, CD13, and CD33). No significant differences in ATRA intracellular accumulation, efflux, or metabolism were found between NB4.306 and the parent NB4 cell line that could explain the observed resistance of the NB4.306 line. The NB4.306 cell line was found to be positive for the t15;17 translocation and showed the usual pml/RAR alpha fusion bands in both Southern and Northern blot assays, but expressed no detectable amount of the usual pml/RAR alpha protein, as assayed by Western blot analysis using an anti-RAR alpha antibody. These results were confirmed in 14 of 14 clones obtained from the NB4.306 cell line, while 30 of 30 clones obtained from the parental NB4 line expressed the usual 110-Kd fusion polypeptide. It is concluded that the occurrence of resistance to ATRA in the NB4.306 cell line is closely associated to the loss of expression of the intact pml/RAR alpha protein.


Blood ◽  
1994 ◽  
Vol 84 (9) ◽  
pp. 3001-3009 ◽  
Author(s):  
T Koyama ◽  
S Hirosawa ◽  
N Kawamata ◽  
S Tohda ◽  
N Aoki

The expressions of thrombomodulin (TM) and tissue factor (TF) by all- trans retinoic acid (ATRA) were studied in human leukemic cell lines including NB4 (acute promyelocytic leukemia) and U937 (monoblastic leukemia). ATRA remarkably upregulated TM antigen expression in cell lysates as well as TM cofactor activity on the cell surfaces of NB4. The level of TM mRNA in NB4 cells was increased by ATRA. Inherently procoagulant NB4 cells contained markedly higher content of TF, which was efficiently reduced by ATRA. Modest increase of TM and decrease of TF were observed when NB4 cells were treated with dibutyryl cyclic adenosine monophosphate (dbcAMP). On the other hand, both ATRA and dbcAMP showed dramatic increase of TM antigen level and modest decrease of TF antigen in U937 cells. These results suggest that ATRA regulates expressions of TM and TF antigens and activity in NB4 and U937 cell lines, and provide evidence for a potential efficiency of ATRA as a preventive and therapeutic agent for disseminated intravascular coagulation in promyelocytic and monocytic leukemia.


Blood ◽  
1993 ◽  
Vol 82 (5) ◽  
pp. 1573-1577 ◽  
Author(s):  
S Dermime ◽  
F Grignani ◽  
M Clerici ◽  
C Nervi ◽  
G Sozzi ◽  
...  

Abstract The mechanism(s) by which acute promyelocytic leukemia (APL) cells acquire resistance to all-trans retinoic acid (ATRA) is poorly understood. We describe here an APL cell line, named NB4.306, that shows resistance to the anti-proliferative action of ATRA. This cell line is also operationally resistant to most ATRA-induced phenotypic modifications (CD11b, CD11c, CD13, and CD33). No significant differences in ATRA intracellular accumulation, efflux, or metabolism were found between NB4.306 and the parent NB4 cell line that could explain the observed resistance of the NB4.306 line. The NB4.306 cell line was found to be positive for the t15;17 translocation and showed the usual pml/RAR alpha fusion bands in both Southern and Northern blot assays, but expressed no detectable amount of the usual pml/RAR alpha protein, as assayed by Western blot analysis using an anti-RAR alpha antibody. These results were confirmed in 14 of 14 clones obtained from the NB4.306 cell line, while 30 of 30 clones obtained from the parental NB4 line expressed the usual 110-Kd fusion polypeptide. It is concluded that the occurrence of resistance to ATRA in the NB4.306 cell line is closely associated to the loss of expression of the intact pml/RAR alpha protein.


2002 ◽  
Vol 35 (3) ◽  
pp. 261-270 ◽  
Author(s):  
Marie-Jo�lle Mozziconacci ◽  
Angelika Rosenauer ◽  
Audrey Restouin ◽  
Mirco Fanelli ◽  
Wenlin Shao ◽  
...  

Blood ◽  
1994 ◽  
Vol 84 (9) ◽  
pp. 3001-3009 ◽  
Author(s):  
T Koyama ◽  
S Hirosawa ◽  
N Kawamata ◽  
S Tohda ◽  
N Aoki

Abstract The expressions of thrombomodulin (TM) and tissue factor (TF) by all- trans retinoic acid (ATRA) were studied in human leukemic cell lines including NB4 (acute promyelocytic leukemia) and U937 (monoblastic leukemia). ATRA remarkably upregulated TM antigen expression in cell lysates as well as TM cofactor activity on the cell surfaces of NB4. The level of TM mRNA in NB4 cells was increased by ATRA. Inherently procoagulant NB4 cells contained markedly higher content of TF, which was efficiently reduced by ATRA. Modest increase of TM and decrease of TF were observed when NB4 cells were treated with dibutyryl cyclic adenosine monophosphate (dbcAMP). On the other hand, both ATRA and dbcAMP showed dramatic increase of TM antigen level and modest decrease of TF antigen in U937 cells. These results suggest that ATRA regulates expressions of TM and TF antigens and activity in NB4 and U937 cell lines, and provide evidence for a potential efficiency of ATRA as a preventive and therapeutic agent for disseminated intravascular coagulation in promyelocytic and monocytic leukemia.


Sign in / Sign up

Export Citation Format

Share Document