Pituitary Iron and Volume in Transfusional Iron Overload.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2017-2017 ◽  
Author(s):  
Leila J Noetzli ◽  
Ashok Panigrahy ◽  
Mehrdad Joukar ◽  
Aleya Hyderi ◽  
Steven D Mittelman ◽  
...  

Abstract Abstract 2017 Poster Board I-1039 Introduction: Hypogonadotropic hypogonadism (HH) is the most common endocrine problem in chronically transfused patients. Unfortunately, gonadotrophe iron toxicity is not readily detectable until puberty and stimulation tests can be difficult to interpret in adolescents. MRI can image preclinical pituitary iron deposition, similar to its use in the heart, liver and pancreas. Increased pituitary R2, a surrogate for iron, and decreased pituitary volume have both been shown to predict clinical and biochemical HH in iron overloaded adults 1,2. However, data regarding pituitary iron deposition and toxicity is lacking in younger patients with iron overload. We present baseline results from a two year observational trial of changes in pituitary R2 and volume in response to deferasirox therapy in patients with transfusional siderosis. Methods: We studied 22 chronically-transfused patients with Thalassemia Major and 2 patients with Diamond Blackfan Anemia. The average age was 13.1 ± 5.2 years (range: 3.7-23.6 years). All studies were performed on a 1.5 T Philips Achieva. Anterior pituitary R2 was assessed in the sagittal and coronal planes using multiple spin echoes from 15 to 120 ms. Pituitary volume was assessed using a 3D spoiled gradient echo sequence with 1 mm3 isotropic voxels. Pituitary R2 was calculated by pixelwise monoexponential fit, with median values used to represent the overall gland R2; boundaries were confirmed by a board-certified neuroradiologist. Normative data for pituitary iron and volume was drawn from another study in 49 normal volunteers. MRI estimates of hepatic iron concentration (HIC), cardiac iron (T2*), and pancreatic iron (R2*) were obtained as clinical standard of care. All statistics were performed using JMP5.1 (SAS, Cary, NC). Results: Patients were mild to moderately iron loaded, with a HIC of 10.2 ± 12.0 mg/g dry wt (median 4.5 mg/g, nl < 1.5 mg/g), cardiac T2* of 29.4 ± 9.2 ms (median 31.5 ms, nl > 20ms), and pancreas R2* of 136 ± 156 Hz (median 73 Hz, nl < 27 Hz). Fourteen patients were below the 10th percentile for height including 7 below the 5th percentile. One patient had been diagnosed with delayed puberty and was on estrogen replacement. Pituitary R2 was elevated in 13/24 patients, beginning in the first decade of life and worsening in patients older than 13 years of age (Figure 1, left). Mean Z-score was 3.2 ± 3.7 (median 2.5, range -0.5 to12.8). Pituitary R2 was correlated with HIC (r2=0.68) and pancreatic R2* (r2=0.40), but not cardiac R2*. Area under the receiver operator characteristic curve was 0.76 for both HIC and pancreatic iron for the prediction of pituitary iron loading. Anterior pituitary volumes were low-normal in the first decade of life but were below the 1st percentile in 4/16 patients older than 13 years of age (Figure 1, right); all 4 patients with severe pituitary shrinkage had significant pituitary iron loading (Z-scores ranging from 2.8 to 12.8). The patient having documented HH had an iron Z-score of 12.8 and a volume Z-score of –5.0. Discussion: HH remains one of the most difficult endocrinopathies to recognize and prevent in transfusional siderosis. The present data demonstrate that iron accumulation occurs early in these patients and worsens dramatically in the second decade of life. Pituitary R2 was closely correlated with liver and pancreatic iron suggesting more rapid iron transport kinetics than for the heart. The low-normal pituitary volumes in childhood may reflect ethnic mismatches between the control and study populations, early iron toxicity, or hypothalamic dysfunction from increased erythropoiesis and metabolic demand. However, severe pituitary volume loss was limited to the second decade of life and associated with markedly increased pituitary iron (R2). Thus, there appears to be a broad, preclinical window to reduce pituitary toxicity. MRI screening of pituitary size and iron concentration needs to be expanded, clinically, to explore this hypothesis and hopefully prevent the significant physiological and psychological sequelae associated with hypogonadism. Disclosures: Coates: Novartis: Consultancy, Honoraria, Research Funding, Speakers Bureau. Wood:Novartis: Research Funding.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 5161-5161
Author(s):  
Leila Noetzli ◽  
Aleya Hyderi ◽  
Ashok Panigrahy ◽  
Susan Carson ◽  
Thomas D. Coates ◽  
...  

Abstract Abstract 5161 Introduction: The relationship between organ iron overload and clinical toxicity in chronically transfused patients is not completely understood. Given that hypogonadotropic hypogonadism (HH) is the most common endocrine problem in chronically transfused patients, it is important to qualify the effects of pituitary iron overload. MRI can image preclinical pituitary iron deposition, similar to its use in the heart, liver and pancreas. Increased pituitary R2, a surrogate for iron, and decreased pituitary volume predict clinical and biochemical HH in iron overloaded adults 1,2. However, data regarding pituitary iron deposition and its effect on pituitary growth in the pediatric population is lacking. In addition, the effect of chelation therapy on pituitary iron and volume over time is unknown. We present first year results from a two year observational trial of changes in pituitary R2 and volume in response to deferasirox therapy in patients with transfusional siderosis. Methods: We report 16 chronically-transfused patients with Thalassemia Major and one patient with Diamond Blackfan Anemia studied over a one year period. All patients were on deferasirox for at least 6 months prior to start of study; drug dosing was determined by the patient's physician and was independent of the research study. The average age at the final exam was 14.1 ± 5.2 years (range: 5.1–24.6 years). All studies were performed on a 1.5 T Philips Achieva. Anterior pituitary R2 was assessed in the sagittal and coronal planes using multiple spin echoes from 15 to 120 ms. Pituitary volume was assessed using a 3D spoiled gradient echo sequence with 1 mm3 isotropic voxels. Pituitary R2 was calculated by pixelwise monoexponential fit, with median values used to represent the overall gland R2; boundaries were confirmed by a board-certified neuroradiologist. Normative data for pituitary iron and volume was drawn from another study in 100 normal volunteers. Patient height, pituitary R2, and pituitary volume were all expressed as age corrected Z-scores. MRI estimates of hepatic iron concentration (HIC), cardiac iron (T2*), and pancreatic iron (R2*) were obtained as clinical standard of care. All statistics were performed using JMP5.1 (SAS, Cary, NC). Results: Patients were mild to moderately iron overloaded with HIC of 6.7 ± 6.9 mg/g dry weight, cardiac T2* of 31.3 ± 7.8 ms, and pancreas R2* of 117.2 ± 128.7 Hz at the beginning of the study. These results were not yet available for the one year follow up. Ferritin values were available for 16/17 of the patients at both baseline (1346.9 ± 1479.5 ng/mL) and year one visits (1102.2 ± 1074.0 ng/mL, p=0.24). Change in ferritin did not correlate with change in pituitary R2. Median sagittal measurements of pituitary R2 were 13.7 ± 1.9 Hz (baseline) and 13.4 ± 1.7 Hz (year one). An improvement was seen in average Z-score for patient height and in average Z-score for anterior pituitary volume. There was no correlation between the change in Z-score for height and the change in Z-score for pituitary volume. Figure 1 summarizes the average Z-scores for height, pituitary volume, and pituitary R2 at baseline and at year one; p-values reflect paired statistics. Discussion: The present data suggest that deferasirox monotherapy stabilizes pituitary iron levels and facilitates normal pituitary and somatic growth in children and young adults. Although reductions in pituitary R2 Z-score did not reach statistical significance, the favorable glandular and somatic growth responses suggest that deferasirox is successfully detoxifying glandular iron. Although encouraging, these data are limited by small sample size and short follow-up; two-year data will provide more robust estimates of treatment efficacy and predictors of response. References 1. Argyropoulou MI, Metafratzi Z, et al. AJR Am J Roentgenol. 2000;175:1567-1569. 2. Argyropoulou MI, Kiortsis DN, et al. Neuroradiology. 2001;43:1056-1058. Disclosures: Coates: Novartis: Research Funding, Speakers Bureau. Wood:Novartis: Consultancy, Research Funding, Symposia speaker.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1094-1094
Author(s):  
Leila Noetzli ◽  
Ashok Panigrahy ◽  
Steven D Mittelman ◽  
Aleya Hyderi ◽  
Ani Dongelyan ◽  
...  

Abstract Abstract 1094 Introduction: Hypogonadotropic Hypogonadism (HH) is one of the most common morbidities in patients with transfusion-dependent anemias such as thalassemia major. Unfortunately, pituitary dysfunction is difficult to detect prior to puberty because of immaturity of the hypothalamic-pituitary-gonadal axis. We used MRI to measure pituitary R2 and volume to determine at what age these patients develop pituitary iron overload and volume loss. Additionally, we aimed to stratify the risk of clinical HH based on pituitary R2 and pituitary volume, and determine predictors of pituitary iron deposition and volume loss. Methods: We recruited 56 patients (52 with thalassemia major and 4 with Blackfan-Diamond syndrome) to have pituitary MRIs to measure pituitary R2 and volume. Diagnosis of HH was determined by either lack of secondary pubertal characteristics by age 13 for females or age 14 for males, by primary or secondary amenorrhea in females ages 16 or older, or by the need for testosterone administration in males. Patients also had pancreas R2*, heart R2*, and liver iron concentration measured by MRI. Normative pituitary R2 and volume trends were determined by a cohort of 100 control patients. Results: Patients were 20.4 ± 12.1 years old and well distributed by sex (31 males, 25 females). All subjects received blood transfusions every 2–4 weeks and were on appropriate chelation therapy as indicated by their physician. Mean pituitary R2 Z-score was 4.5 and mean anterior pituitary volume Z-score was −0.9. Figure 1 shows pituitary R2 values as a function of age, superimposed on normal trends from the control population. Patients with transfusional iron overload began to develop pituitary iron overload in the first decade of life; however, significant iron deposition were observed beginning in the second decade. Heavy pituitary iron deposition (Z-score > 5) and volume loss (Z-score < −2.5) were predictive of HH (Figure 2). Volume loss was highly specific (87%) but identified only half of HH cases. The remaining HH patients had heavy pituitary iron (Z-score > 5), but preserved pituitary volume. Pituitary R2 correlated significantly with serum ferritin as well as liver iron concentration, pancreatic R2*, and cardiac R2* by MRI. Discussion: Pituitary iron loading begins as early as the first decade of life in chronically transfused patients, meriting a pituitary MRI in children under 10 years old. Severe pituitary iron loading as well as volume loss throughout the second decade of life, and are predictive of HH, warranting more intensive screening in this age group. However, many patients with moderate-to-severe pituitary iron overload retained normal gland volume and function, representing a potential therapeutic window. This may also be explained by improvements in gland function observed following intensive chelation therapy. Serial tracking of pituitary iron and volume trends on age-appropriate nomograms should improve diagnostic accuracy and toxicity prophylaxis. Disclosures: Wood: Novartis: Research Funding; Ferrokin Biosciences: Consultancy; Cooleys Anemia Foundation: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1086-1086
Author(s):  
Vasilios Berdoukas ◽  
Mammen Puliyel ◽  
Adam Bush ◽  
Thomas Hofstra ◽  
Bhakti P. Mehta ◽  
...  

Abstract Abstract 1086 Recurrent blood transfusion results in significant iron overload that can cause serious organ damage and death if not properly treated. Liver iron concentration (LIC) is the best indicator of total body iron status and can be measured non-invasively by magnetic resonance imaging (MRI). In the past, it was recommended that LIC assessments by liver biopsy begin after about 6 years of age (yo). MRI is also an excellent way to monitor iron cardiomyopathy, which remains a major cause of death in chronically transfused patients. To understand how rapidly iron overload develops, we reviewed the 1316 MRI iron studies we have performed since 2002 and summarized the LIC and cardiac R2* in a subset of 127 subjects who had their first MRI studies before 10 yo. Because of the known serious pitfalls in the assessment of total body iron by measurement of ferritin, LIC is measured by MRI in our center as standard of care in all patients on chronic transfusion soon after the start of iron chelation therapy. Most children less than 6 years of age require general anesthesia for this procedure. In some older children cooperation can be achieved by distraction techniques. Thirty three percent had sickle cell disease (SCD), 33% thalassemia major (TM), 11% Blackfan Diamond anemia (DBA), 3% congenital dyserythropoietic anemia (CDA), and 8.6% had other transfusion dependent anemias (OTRAN) and 11.4% had studies done not related to transfusion. This paper will focus on the 114 subjects whose MRI was done to evaluate transfusion related iron overload. The median age at first MRI was 6 years with 25% having their first study before 3.7and 10% before 2.1 yo. The median LIC was 9.8 mg/g dry weight (dw) and 10% of subjects had a first LIC > 22 mg/g dw. Only 2.5% had evidence of cardiac iron (T2* < 20ms). The median LICs (mg/g dw) were 8.9 for SCD, 11.8 for TM, 13 for DBA, 6.1 for CDA, and 8.7 OTRAN and were not statistically different. The minima ranged from 0.6 in OTRAN to 4.2 for CDA and the maxima ranged from 25 in CDA to 39.7 for SCD. There was significant iron loading even when we restricted the analysis to 27 subjects with a first MRI at < 3.5 yo; SCD (2.3 median (med), 2.8 maximum (max)), TM (14.6 med, 35 max), DBA (13 med, 15 max),CDA (6.6 med, 25 max) and OTRAN (5.8 med, 11 max). There were 4 subjects who had evidence of cardiac iron loading. Two had DBA with T2* of 18 ms and 16 ms at 2.5 and 3.7 years of age respectively. A third DBA subject had a T2* of 20 ms at only 4.6 yo. Two TM subjects had a T2* of 15 ms at 6.6 and 9.1 yo respectively. These data indicate that there is significant elevation in LIC by the age of 3.5 years with a median LIC of 11 mg/g dw and 25% of subjects having a LIC > 15 mg/g dw. These are very high levels of iron loading. Furthermore, 2.5% of subjects in this age already have evidence of cardiac iron loading. On the basis of such findings, direct measurement of liver iron by MRI is essential as soon as possible after the start of regular transfusions and cardiac iron should be measured early in high risk children with Diamond Blackfan anemia and thalassemia major. Disclosures: Berdoukas: ApoPharma Inc.: Consultancy. Carson:ApoPharma Inc.: Honoraria; Novartis Inc: Speakers Bureau. Wood:Novartis: Research Funding; Ferrokin Biosciences: Consultancy; Cooleys Anemia Foundation: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Coates:Novartis Inc: Speakers Bureau.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2238-2238 ◽  
Author(s):  
John C. Wood ◽  
Alan Cohen ◽  
Banu Aygun ◽  
Hamayun Imran ◽  
Lori Luchtman-Jones ◽  
...  

Abstract Introduction Chronic transfusion therapy is the standard of care for children with sickle cell anemia (SCA) and abnormal transcranial Doppler velocities. Although effective, monthly transfusions are costly, inconvenient, and produce iron overload in the liver and extrahepatic organs. The TWiTCH study (ClinicalTrials.gov NCT01425307) is a randomized clinical trial to determine whether hydroxyurea therapy leads to comparable time averaged TCD velocities as conventional transfusion therapy, while reducing somatic iron stores. We report baseline data on iron burden in the spleen, pancreas, and kidneys from the TWiTCH cohort. Methods Pediatric patients from 22 centers underwent screening R2* assessment of the liver, spleen, pancreas, and kidneys. All sites used a 1.5 Tesla magnet, torso phased array coils, and a multiple echo gradient echo sequence with a minimum echo time ≤1.3 ms. Images were analyzed centrally at Children’s Hospital Los Angeles; core laboratory staff were blinded to patient, site, and visit data. Raw R2* values were used as iron surrogates for spleen, pancreas, and kidney. All statistics were performed by the TWiTCH Data Coordinating Center. Results A total of 113/159 enrolled patients (mean age 8.8 ± 6.3 years) successfully completed baseline abdominal R2* assessment (Table 1). Patients had received chronic transfusions for 4.2 ± 2.4 years and iron chelation for 3.2 ± 2.2 years. Serum ferritin values ranged from 191 to 10593 ng/ml (2655.6 ± 1668.1 ng/ml). All subjects had liver iron detectable by R2*, with 51.3% having liver iron concentration (LIC) >7 mg/g, and 13.3% >15 mg/g of dry weight. Splenic R2* could be assessed in 80/113 (71%) subjects, with the remainder having surgical splenectomy or autoinfarction. Splenic R2* revealed splenic tissue was comparable to liver tissue containing on average 13.1 mg Fe/g of dry weight. Pancreas R2* was greater than the upper limits of normal in 39.3% but no values exceeded 100 Hz (the level associated with pancreas dysfunction, pituitary iron accumulation, and cardiac iron deposition in thalassemia patients). LIC was the only significant predictor of pancreas R2* (r2 = 0.06, p=0.001). Kidney R2* was above the upper limits of normal in 79.5% of the patients and demonstrated preferential cortical distribution. Kidney R2* positively correlated with lactate dehydrogenase levels (p < 0.001), positive correlated with LIC R2* (p=0.005) and negatively correlated with hemoglobin level(p = 0.01) with a combined r2 of 0.29. No association was found with total bilirubin or reticulocyte count. Discussion This represents the first multicenter study documenting the prevalence and extent of extrahepatic iron deposition in children with SCA receiving chronic transfusions. Splenic iron deposition was common but uncorrelated with LIC,, suggesting different kinetics of iron loading transport. Clinically-significant pancreatic iron deposition was not observed. Renal R2* tracked with intravascular hemolysis markers, rather than LIC or ferritin, consistent with tubular uptake of filtered cell-free hemoglobin. Overall, chronically transfused children with SCA have greater splenic and renal iron deposition, but much milder pancreatic iron overload, than that observed in transfused thalassemia patients. Disclosures: Wood: Novartis: Honoraria; Apopharma: Honoraria, Patents & Royalties; Shire: Consultancy, Research Funding. Off Label Use: Hydroxyurea is FDA-approved for use in adults but not children. Thompson:Amgen: Research Funding; Eli Lilly: Research Funding; Glaxo Smith Kline: Research Funding; ApoPharma: Consultancy, Honoraria; Novartis: Consultancy, Research Funding; bluebird bio: Research Funding.


Hematology ◽  
2013 ◽  
Vol 2013 (1) ◽  
pp. 447-456 ◽  
Author(s):  
John Porter ◽  
Maciej Garbowski

Abstract The aims of this review are to highlight the mechanisms and consequences of iron distribution that are most relevant to transfused sickle cell disease (SCD) patients and to address the particular challenges in the monitoring and treatment of iron overload. In contrast to many inherited anemias, in SCD, iron overload does not occur without blood transfusion. The rate of iron loading in SCD depends on the blood transfusion regime: with simple hypertransfusion regimes, rates approximate to thalassemia major, but iron loading can be minimal with automated erythrocyte apheresis. The consequences of transfusional iron overload largely reflect the distribution of storage iron. In SCD, a lower proportion of transfused iron distributes extrahepatically and occurs later than in thalassemia major, so complications of iron overload to the heart and endocrine system are less common. We discuss the mechanisms by which these differences may be mediated. Treatment with iron chelation and monitoring of transfusional iron overload in SCD aim principally at controlling liver iron, thereby reducing the risk of cirrhosis and hepatocellular carcinoma. Monitoring of liver iron concentration pretreatment and in response to chelation can be estimated using serum ferritin, but noninvasive measurement of liver iron concentration using validated and widely available MRI techniques reduces the risk of under- or overtreatment. The optimal use of chelation regimes to achieve these goals is described.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 618-618
Author(s):  
Janet L. Kwiatkowski ◽  
Mohsen Saleh Elalfy ◽  
Caroline Fradette ◽  
Mona Hamdy ◽  
Amal El-Beshlawy ◽  
...  

Background: Patients with sickle cell disease (SCD) or other rare anemias whose care includes chronic blood transfusions must receive iron chelation to prevent the morbidity of iron overload. Currently, only deferoxamine (DFO) and deferasirox (DFX) are approved chelators in these patient populations. This randomized open-label trial evaluated if the efficacy of deferiprone (DFP) was non-inferior to DFO. DFO was used as the comparator product since DFX was not approved as first-line treatment for SCD at trial initiation. Methods: Participants at 27 sites in 8 countries were randomized in a 2:1 ratio to receive either DFP or DFO for up to 12 months. Those with lower transfusional iron input and/or less severe iron load were prescribed either DFP 25 mg/kg of body weight t.i.d. or DFO 20 mg/kg (children) or 40 mg/kg (adults); those with higher iron input and/or more severe iron load received either DFP 33 mg/kg t.i.d. or DFO up to 40 mg/kg (children) or 50 mg/kg (adults). Dosages could be adjusted over the course of the trial if necessary. Efficacy endpoints were the changes from baseline in liver iron concentration (LIC), cardiac iron, and serum ferritin (SF) at Month 12. The primary endpoint was based on LIC, and for the demonstration of non-inferiority of DFP to DFO, the upper limit of the 95% confidence interval for the difference between treatments had to be no more than 2 mg/g dry weight (dw). All patients had their neutrophil count monitored weekly, whereas other safety assessments and compliance with study therapy were evaluated monthly. Acceptable compliance was defined as taking 80% to 120% of the prescribed dosage. Results: A total of 228 of the targeted 300 patients were dosed with 152 receiving DFP and 76 receiving DFO, to assess non-inferiority. There were no significant differences between the groups in any demographic measures: in each treatment group, 84% of patients had SCD and the remainder had other, rarer forms of transfusion-dependent anemia. Mean age at enrollment was 16.9 years (± 9.6); 53.1% of patients were male; and 77.2% were white, 16.2% black, and 6.6% multi-racial. Over the course of the study, 69% of patients in the DFP group and 79% in the DFO group had acceptable compliance with treatment. Based on the Pocock's α spending function, a more stringent confidence level of 96.01% was applied to the calculation of confidence interval for the evaluation of non-inferiority. For the primary efficacy endpoint, the least squares (LS) mean change in LIC (measured as mg/g dw) was -4.04 for DFP, -4.45 for DFO; the upper limit of the 96.01% confidence interval for the difference was 1.57, thereby demonstrating non-inferiority of DFP to DFO. The upper limit for the subpopulation of patients with SCD also met the non-inferiority criterion. For the secondary endpoints, the change in cardiac iron (measured as ms on MRI T2*, log-transformed) was approximately -0.02 for both; and for SF (measured as μg/L), it was -415 vs. -750 for DFP vs. DFO, respectively. The difference between the groups was not statistically significant for both endpoints. With respect to safety, there was no statistically significant difference between the groups in the overall rate of adverse events (AEs), treatment-related AEs, serious AEs, or withdrawals from the study due to AEs. Agranulocytosis was seen in 1 DFP patient vs. no DFO patients, while events of less severe episodes of neutropenia occurred in 4 vs. 1, respectively. All episodes of agranulocytosis and neutropenia resolved. There was no significant treatment group difference in the rates of any of the serious AEs. Conclusion: The efficacy of DFP for the treatment of iron overload in patients with SCD or other rare anemias is not inferior to that of DFO, as assessed by changes in liver iron concentration. non-inferiority was supported by the endpoints on cardiac iron load and SF. The safety profile of DFP was acceptable and was similar to that previously seen in thalassemia patients, and its use was not associated with unexpected serious adverse events. The results of this study support the use of DFP for the treatment of iron overload in patients with SCD or other rare transfusion-dependent anemias. Note: The authors listed here are presenting these findings on behalf of all investigators who participated in the study. Disclosures Kwiatkowski: Terumo: Research Funding; Imara: Consultancy; bluebird bio, Inc.: Consultancy, Research Funding; Agios: Consultancy; Novartis: Research Funding; Celgene: Consultancy; Apopharma: Research Funding. Fradette:ApoPharma: Employment. Kanter:Sangamo: Consultancy, Honoraria; Novartis: Consultancy, Honoraria; Imara: Consultancy; Guidepoint Global: Consultancy; GLG: Consultancy; Cowen: Consultancy; Jeffries: Consultancy; Medscape: Honoraria; Rockpointe: Honoraria; Peerview: Honoraria; SCDAA: Membership on an entity's Board of Directors or advisory committees; NHLBI: Membership on an entity's Board of Directors or advisory committees; bluebird bio, Inc.: Consultancy; Modus: Consultancy, Honoraria. Tsang:Apotex Inc.: Employment. Stilman:ApoPharma: Employment. Rozova:ApoPharma: Employment. Sinclair:ApoPharma: Employment. Shaw:ApoPharma: Employment. Chan:ApoPharma: Employment. Toiber Temin:ApoPharma: Employment. Lee:ApoPharma: Employment. Spino:ApoPharma: Employment. Tricta:ApoPharma: Employment. OffLabel Disclosure: Deferiprone is an oral iron chelator.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3726-3726
Author(s):  
Peter Nielsen ◽  
Tim H. Bruemmendorf ◽  
Regine Grosse ◽  
Rainer Engelhardt ◽  
Nicolaus Kroeger ◽  
...  

Abstract Patients with myelodysplastic syndromes (MDS), osteomyelofibrosis (OMF), or severe aplastic anemia (SAA) suffer from ineffective erythropoiesis due to pancytopenia, which is treated with red blood cell transfusion leading to iron overload. Especially in low-risk patients with mean survival times of > 5 years, potentially toxic levels of liver iron concentration (LIC) can be reached. We hypothesize that the higher morbidity seen in transfused patients may be influenced by iron toxicity. Following a meeting in Nagasaki 2005, a consensus statement on iron overload in myelodysplastic syndromes has been published, however, there is still no common agreement about the initiation of chelation treatment in MDS patients. In the present study, a total of 67 transfused patients with MDS (n = 20, age: 17 – 75 y), OMF (n = 4, age: 48 – 68 y), SAA (n = 43, age: 5 – 64 y) were measured by SQUID biomagnetic liver susceptometry (BLS) and their liver and spleen volumes were scanned by ultrasound at the Hamburg biosusceptometer. Less than 50 % were treated with DFO. LIC (μg/g-liver wet weight, conversion factor of about 6 for μg/g-dry weight) and volume data were retrospectively analyzed in comparison to ferritin values. Additionally, 15 patients (age: 8 – 55 y) between 1 and 78 months after hematopoietic cell transplantation (HCT) were measured and analyzed. LIC values ranged from 149 to 8404 with a median value of 2705 μg/g-liver, while serum ferritin (SF) concentrations were between 500 and 10396 μg/l with a median ratio of SF/LIC = 0.9 [(μg/l)/(μg/g-liver)] (range: 0.4 to 5.2). The Spearman rank correlation between SF and LIC was found to be highly significant (RS = 0.80, p < 0.0001), however, prediction by the linear regression LIC = (0.83± 0.08)·SF was poor (R2 = 0.5) as found also in other iron overload diseases. Although iron toxicity is a long-term risk factor, progression of hepatic fibrosis has been observed for LIC > 16 mg/g dry weight or 2667 μg/g-liver (Angelucci et al. Blood2002; 100:17–21) within 60 months and significant cardiac iron levels have been observed for LIC > 350 μmol/g or 3258 μg/g-liver (Jensen et al. Blood2003; 101:4632-9). The Angelucci threshold of hepatic fibrosis progression was exceeded by 51 % of our patients, while 39 % were exceeding the Jensen threshold of potential risk of cardiac iron toxicity. The total body iron burden is even higher as more than 50 % of the patients had hepatomegaly (median liver enlargement factor 1.2 of normal). A liver iron concentration of about 3000 μg/g-liver or 18 mg/g-dry weight has to be seen as latest intervention threshold for chelation treatment as MDS patients are affected by more than one risk factor. A more secure intervention threshold would be a LIC of 1000 μg/g-liver or 4 – 6 mg/g-dry weight, corresponding with a ferritin level of 900 μg/l for transfused MDS patients. Such a LIC value is not exceeded by most subjects with heterozygous HFE-associated hemochromatosis and is well tolerated without treatment during life-time. Non-invasive liver iron quantification offers a more reliable information on the individual range of iron loading in MDS which is also important for a more rational indication for a chelation treatment in a given patient.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 5111-5111 ◽  
Author(s):  
Ali Taher ◽  
John B. Porter ◽  
Antonis Kattamis ◽  
Vip Viprakasit ◽  
Tomasz Lawniczek ◽  
...  

Abstract Abstract 5111 Background Clinically mild forms of thalassemia exist that, unlike β-thalassemia major, require no or only infrequent transfusions (eg. β-thalassemia intermedia, HbH disease). However, due to increased gastrointestinal iron absorption secondary to ineffective erythropoiesis these patients may still develop iron overload. For example, thalassemia intermedia patients (n=74) within a cross-sectional study had a mean serum ferritin (SF) of 1023 ng/mL (range 15–4140) and a mean liver iron concentration (LIC) of 9 mg Fe/g dw (range 0.5–32.1) at baseline despite most being transfusion-naïve (n=20) or rarely transfused (n=45), and only nine receiving regular transfusions (2–4 times/yr) (Taher et al. ITIFPaP: 13th International TIF Conference for Thalassaemia Patients & Parents, October 8–11 2008, Singapore, poster number MON04). Non-transfusional iron overload leads to the same serious clinical sequelae as transfusional iron overload, including liver, cardiac and endocrine dysfunctions. As patients with non-transfusional iron overload are not candidates for phlebotomy due to their underlying anemia, chelation therapy is the only available option for decreasing their iron burden. However, there is currently limited data available on the use of chelation in this population. The once-daily oral iron chelator deferasirox (Exjade®) is currently approved for the treatment of iron overload in patients with transfusion-dependent anemia. This prospective, randomized, double-blind, placebo-controlled Phase II ‘THALASSA’ study will evaluate the efficacy and safety of deferasirox in patients with non-transfusion-dependent thalassemia. Methods Non-transfusion-dependent thalassemia patients aged ≥10 yrs will be randomized 2:1:2:1 to starting doses of deferasirox/placebo 5 mg/kg/day/ deferasirox/placebo 10 mg/kg/day over a planned 12-month treatment period. Doses can be doubled after 6 months should patients require a higher dose, which will be determined after 6 months of treatment. All patients are required to have a baseline LIC of ≥5 mg Fe/g dw, as measured by R2 magnetic resonance imaging, and SF levels of >300 ng/mL. Patients will be excluded if they have: anticipated regular transfusions during the study (sporadic transfusions, such as in cases of infection, are allowed); any transfusion within 6 months prior to study start, chelation within 1 month prior to study start; HbS variants of thalassemia; impaired renal and liver function. Primary efficacy endpoint is absolute change from baseline in LIC at 12 months; secondary efficacy endpoints include change from baseline in LIC after 6 months and in SF after 6 and 12 months, as well as change in hematological and iron metabolism parameters (eg hemoglobin, transferrin saturation). Safety assessments include adverse event and laboratory parameter monitoring. 156 patients are planned for inclusion. Results As of 3 August 2009, 18 sites had been activated. Sites currently activated are in Thailand (n=5), Turkey (n=4), Italy (n=3), Malaysia (n=2), UK (n=2) Lebanon (n=1). Fifty-seven patients have been randomized to either deferasirox or placebo and their demographic data are shown in Table 1. Conclusions Similar to transfusion-dependent thalassemia patients, non- transfusion-dependent thalassemia patients also develop iron overload. This ongoing study will generate prospective efficacy and safety data for the use of deferasirox in non-transfusion-dependent thalassemia patients with iron overload. To prevent long term complications due to iron overload, it is important to assess iron chelation in this patient population as they are not candidates for phlebotomy due to the underlying anemia. Disclosures Taher: Novartis: Honoraria, Research Funding. Porter:Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Vifor International: Membership on an entity's Board of Directors or advisory committees. Kattamis:Novartis: Consultancy, Honoraria, Speakers Bureau. Viprakasit:Thai Government: Employment; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Government Pharmaceutical Organization of Thailand: Honoraria, Research Funding. Lawniczek:Novartis Pharma AG: Employment. Pereno:Novartis Pharma AG: Employment. Schoenborn-Kellenberger:Novartis Pharma AG: Employment. Cappellini:Novartis: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Genzyme: Membership on an entity's Board of Directors or advisory committees.


2015 ◽  
Vol 2015 ◽  
pp. 1-4
Author(s):  
Rifki Ucler ◽  
Erdal Kara ◽  
Murat Atmaca ◽  
Sehmus Olmez ◽  
Murat Alay ◽  
...  

Hemochromatosis is a disease caused by extraordinary iron deposition in parenchymal cells leading to cellular damage and organ dysfunction.β-thalassemia major is one of the causes of secondary hemochromatosis due to regular transfusional treatment for maintaining adequate levels of hemoglobin. Hypogonadism is one of the potential complications of hemochromatosis, usually seen in patients with a severe iron overload, and it shows an association with diabetes and cirrhosis in adult patients. We describe a patient with mild transfusional hemochromatosis due toβ-thalassemia major, presenting with central hypogonadism in the absence of cirrhosis or diabetes. Our case showed an atypical presentation with hypogonadotropic hypogonadism without severe hyperferritinemia, cirrhosis, or diabetes. With this case, we aim to raise awareness of hypogonadotropic hypogonadism in patients with intensive transfused thalassemia major even if not severe hemochromatosis so that hypogonadism related complications, such as osteoporosis, anergia, weakness, sexual dysfunction, and infertility, could be more effectively managed in these patients.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1018-1018 ◽  
Author(s):  
Banu Aygun ◽  
Nicole Mortier ◽  
Zora R. Rogers ◽  
William Owen ◽  
Beng Fuh ◽  
...  

Abstract Background: TCD With Transfusions Changing to Hydroxyurea (TWiTCH, ClinicalTrials.gov NCT01425307), an NHLBI-sponsored Phase III multicenter trial, compared transfusions to hydroxyurea for maintaining TCD velocities in children with sickle cell anemia who previously received transfusions for abnormal TCD velocities. Iron overload was treated with serial phlebotomy in children randomized to hydroxyurea. At the first scheduled interim analysis, non-inferiority of hydroxyurea was demonstrated and the study was terminated prematurely. Methods: Participants randomized to hydroxyurea received decreasing volumes of monthly transfusions during hydroxyurea dose escalation to maximum tolerated dose (MTD), averaging 6-7 months. During this transfusion overlap period, no chelation therapy was given. After hydroxyurea MTD was reached, transfusions were discontinued and children started monthly phlebotomy if their entry liver iron concentration (LIC) by MRI-R2 (FerriScan®) was ≥2 mg Fe/g dry weight liver (DWL). The prescribed phlebotomy volume was 10 mL/kg (maximum 500 mL) with adjustments for anemia (5 mL/kg for Hb 8.0-8.5 g/dL and held if Hb <8.0 g/dL). Phlebotomy was performed over 30 minutes with immediate equal volume normal saline replacement, typically using peripheral venous access. LIC was assessed at study entry, midpoint (12 months), and exit (24 months/early closure). Ferritin was monitored monthly using a centralized laboratory. Iron loading calculations were based on actual transfusion and phlebotomy volumes. Results: Sixty children (mean age 9.7±3.2 years; range 5.2-19.0 years; 48% male) were randomized to the Hydroxyurea Treatment Arm. The average duration of previous transfusions was 4.5±2.8 years. Almost all (51/60, 85%) had previously received chelation, primarily deferasirox, and 48 (80%) were on chelation therapy at study enrollment. Hydroxyurea MTD was achieved in 57 children (95%), and 54 commenced phlebotomy (two had low iron burden with LIC <2 and one had Hb <8.0 g/dL). A total of 914 phlebotomy procedures were scheduled per protocol for these 54 children and 756 (83%) were fully completed. There were 77 procedures cancelled due to anemia and another 81 procedures cancelled due to planned anesthesia (16), provider preference (14), hydroxyurea-related cytopenia (13), intercurrent illness (11), inadequate iv access (9), family request (5) or other (13). In 94% of phlebotomy procedures that were initiated, the full volume was removed; for the remaining 6% (47 procedures), a reduced volume was removed due to loss of venous access (37), symptoms such as headache or lightheadedness (7), or other reasons (3). A total of 18 Adverse Events (17 Grade 2 and one Grade 3) occurred in 14 participants in association with phlebotomy (2.3% prevalence). The most common complication was light headedness/near-syncope (6) followed by anemia (4), hypotension (3), headache (3), and pain at the venous access site (1). One subject had a syncopal episode followed by transient weakness, which was centrally adjudicated as TIA. An average of 53.6±21.8 mL/kg blood was administered in the hydroxyurea-treated arm, which calculates to an average iron loading of 40.1±16.3 mg Fe/kg, while an average of 112 mL/kg of venous blood was removed by phlebotomy, which calculates to an average iron unloading of 36.1±15.7 mg Fe/kg. For the 54 children who received phlebotomy, the average LIC was 12.0± 9.7 mg/g at study entry, 13.4±10.3 at midpoint reflecting overlap transfusions without chelation, and 9.7±8.9 at study exit reflecting serial phlebotomy, for an average net LIC decrease of 2.3±4.1 mg/g. Average serum ferritin at study entry was 3105±741 ng/mL and 1392±1542 ng/mL at study exit. For 39 children who completed all 24 months of treatment before study closure, the overall average LIC decrease was 3.2±3.8 mg/gram DWL and 10 had final LIC measurements <3 mg Fe/g. Calculated net iron loading was not significantly associated with measured changes in LIC or ferritin. Conclusions: In the TWiTCH trial, phlebotomy was a feasible, safe, well-tolerated, and effective treatment for transfusional iron overload in children with sickle cell anemia. Although initial overlap transfusions without chelation limited the phlebotomy effects, in children who reached hydroxyurea MTD and discontinued chronic transfusions, monthly phlebotomy led to net iron unloading and lower LIC, and significantly reduced iron burden. Disclosures Rogers: Apopharma: Consultancy. Kalfa:Baxter/Baxalta/Shire: Research Funding. Kwiatkowski:Sideris Pharmaceuticals: Consultancy; Luitpold Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; Apopharma: Research Funding; Ionis pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; Shire Pharmaceuticals: Consultancy. Wood:World Care Clinical: Consultancy; Biomed Informatics: Consultancy; Biomed Informatics: Consultancy; Celgene: Consultancy; Celgene: Consultancy; AMAG: Consultancy; Apopharma: Consultancy; Apopharma: Consultancy; AMAG: Consultancy; World Care Clinical: Consultancy; Vifor: Consultancy; Vifor: Consultancy; Ionis Pharmaceuticals: Consultancy; Ionis Pharmaceuticals: Consultancy. Ware:Global Blood Therapeutics: Consultancy; Biomedomics: Research Funding; Bayer Pharmaceuticals: Consultancy; Addmedica: Research Funding; Nova Laboratories: Consultancy; Bristol Myers Squibb: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document