Cardiac Iron Overload In Sickle-Cell Disease

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1013-1013
Author(s):  
Antonella Meloni ◽  
Mammen Puliyel ◽  
Alessia Pepe ◽  
Massimo Lombardi ◽  
Vasilios Berdoukas ◽  
...  

Abstract Introduction Chronically transfused sickle cell disease (SCD) patients have lower risk of endocrine and cardiac iron overload load than comparably transfused thalassemia major patients. The mechanisms for this protection remain controversial but likely reflects lower transferrin saturation and circulating labile iron pools because of chronic inflammation and regeneration of apotransferrin through erythropoiesis. However, cardioprotection is incomplete; we have identified 6 patients out of the 201 patients (3%) followed at our Institution who have prospectively developed cardiac iron. We present the clinical characteristics of these patients to identify potential risk factors for cardiac iron accumulation. Methods Cardiac, hepatic, and pancreatic iron overload were assessed by R2* Magnetic Resonance Imaging (MRI) techniques as extensively described by our laboratory. The medical records of the selected patients were reviewed for demographic data, for transfusion and chelation history and for hematologic and biochemical parameters. Results Table 1 describes clinical characteristics of the six patients at the time they developed detectable cardiac iron (R2* ≥ 50 ms). Patient 6 was included because he showed a R2* of 49 Hz that was increasing rapidly. Five of the six patients were managed on simple transfusions. Five patients had been on chronic transfusion for more than 11 years. The three patients who developed cardiac iron the earliest (3.7 – 14 years of transfusions) had more efficient suppression of endogenous red cell production (HbS levels 2-5%) compared with patients who required longer transfusional exposure (HbS levels 13.3 – 41%). All patients had qualitatively poor chelation compliance (<50%), based upon their prescription refill rate. All patients had serum ferritin levels exceeding 4600 and liver iron concentration (LIC) greater than 22 mg/g. Pancreatic R2* was greater than 100 Hz in every patient studied (5/6). Figure 1 shows the longitudinal relationship between iron overload in the heart and in the other organs for each patient; initial iron levels are shown in black. Cardiac R2* appears increase dramatically once a critical LIC “threshold” is reached, qualitatively similar to the 18 mg/g threshold observed in thalassemia major patients. Cardiac R2* rose proportionally to pancreas R2*, similar to thalassemia major patients, with all of the patients having pancreas R2* > 100 Hz at the time cardiac iron was detected. Conclusions Cardiac iron overload occurs in a small percentage of chronically transfused SCD patients and is only associated with exceptionally poor control of total body iron stores. Duration of chronic transfusion is clearly important but other factors, such as levels of effective erythropoiesis, may also contribute to cardiac risk. The relationship between cardiac iron and pancreas R2* suggests that pancreas R2* can serve as a valuable screening tool for cardiac iron in SCD patients. Disclosures: Berdoukas: ApoPharma inc: Consultancy. Coates:ApoPharma inc, Novartis, Shire: Consultancy. Wood:Novartis: Consultancy, Honoraria; Shire: Consultancy, Research Funding; ApoPharma: Consultancy, Honoraria, Use of deferiprone in myocardial infarction, Use of deferiprone in myocardial infarction Patents & Royalties.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 528-528
Author(s):  
Amy Y Tang ◽  
Cassandra D Josephson ◽  
Kristina Lai ◽  
Peter A. Lane ◽  
Ross M. Fasano

Abstract Background Iron overload is a recognized consequence of chronic transfusion therapy in patients with sickle cell disease (SCD), but most of the focus to date has been on the effects of increased liver iron concentration (LIC) with increasing transfusion burden. Even though there is a robust body of literature concerning cardiac iron overload (CIO) in patients with thalassemia major, there remains a paucity of data in how to detect and treat CIO in patients with SCD, particularly in the pediatric and young adult population. While CIO is seen less commonly in sickle cell disease than in thalassemia, patients with SCD remain at risk, with recent studies demonstrating an incidence of 2-5% of CIO in chronically transfused patients with SCD. We performed a retrospective chart review of patients with cardiac MRIs (cMRIs) and LICs by Ferriscan performed at our institution to identify risk factors for CIO, as well as to characterize institutional practice for assessing cardiac iron in the absence of defined practice guidelines. Methods We reviewed clinical characteristics of all patients with SCD who had cMRIs performed at Children's Healthcare of Atlanta between June 2012 and December 2017. We then queried our institutional sickle cell database for patients who were at least 3 years old in 2010, genotype SS or S Beta zero thalassemia, were on chronic transfusions for at least 5 years by 2017, and had not undergone a cMRI. Patients who were status post bone marrow transplant were excluded. For comparison of age, average ferritin, and transfusion duration, significance among means between patients with and without CIO was calculated using a two-tailed unpaired t-test. For comparison of LIC, significance among medians was calculated using the Mann Whitney test. A p value of <0.05 was considered significant. Statistical analyses were performed using Prism 6 (GraphPad Software, Inc.). Results Of 36 evaluable patients who had undergone cMRI, there were 11 with CIO, as defined by a T2* < 20ms. Clinical characteristics are shown in Figure 1. Patients were 7-28 years of age, and had received chronic transfusion therapy for a range of 22 months to 228 months. Between patients who did and did not have CIO, there was no significant difference in average 1-year ferritin level (6786 vs 6373 ng/mL, p=0.79), transfusion duration (103 vs 123 months, p=0.41), or age (15 vs 18 years, p=0.12). There was a higher median LIC by Ferriscan of > 43 mg/g in those with CIO vs 34 mg/g in those without CIO, although this was not statistically significant (Figure 1). Interestingly, CIO was seen as young as 7 years of age and after as little as 22 months of chronic transfusions, and with concurrent LIC values as low as 8.1 mg/g. Of the 11 patients with CIO, 6 had follow-up cMRI data available, and all 6 had normalization of cardiac iron (T2* > 20ms) on subsequent MRIs (Figure 2 and Table 2). There was 1 patient who did not have full transfusion and chelation history available for analysis. Of the remaining 5, 5/5 had increased or more aggressive chelation added, including 2 who were started on high-dose IV Desferal every 2 weeks; 3/5 also had partial manual exchange (PME) added to their chronic transfusion regimens. There were 80 patients who were on chronic transfusions but did not have a cMRI performed; as a group, they had a median LIC of 17 mg/g (range: 1.7 - >43 mg/g), an average 1-year ferritin of 3641 ng/mL (range: 520 - 8478 ng/mL), and had been on chronic transfusions for a mean of 87 months at time of Ferriscan study (range: 14 - 192 months). Overall, these patients had a lower transfusion burden than those who received cMRIs, but there were several in this group who had significant iron overload, including 10 who had LIC values of > 43mg/g. Conclusion CIO in SCD may be a more salient issue, and occur earlier, than previously described. We did not find a strong relationship between CIO and ferritin levels or LIC by Ferriscan, but we did find that CIO was reversible with more aggressive chelation or the addition of PME. While guidelines for monitoring for CIO in SCD are largely extrapolated from thalassemia data, the rate and physiology of iron loading may be completely different. Due to a paucity of information in this area, more studies are needed to guide screening and to fully assess risk factors that may put certain individuals more at risk for cardiac iron loading. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Author(s):  
Tamer Hassan ◽  
Mohamed Badr ◽  
Mohamed Arafa ◽  
Doaa Abdel Rahman ◽  
Manar Fathy ◽  
...  

Abstract Cardiac iron overload is secondary to chronic blood transfusion in patients with sickle cell disease (SCD). Iron overload cardiomyopathy is a restrictive cardiomyopathy associated with systolic and diastolic dysfunction. Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases responsible for tissue remodeling. Many studies offer strong evidence for the role of MMP-9 in LV remodeling. We aimed to detect plasma levels of MMP-9 in patients with SCD and its correlation to myocardial iron overload. A case control study was carried out on 50 patients with SCD and 50 age and sex matched healthy controls. Assessment of cardiac iron overload in patients by MRI T2* was performed. Plasma MMP-9 levels were measured for patients and controls using ELISA. SCD patients had significantly higher levels of MMP-9 than controls. There was highly significant correlation between plasma levels of MMP-9 and serum ferritin. Patients with vaso-occlusive crises (VOC) > 5/year had significantly higher levels of MMP-9 than those with VOC ≤ 5 /year. No significant correlation was found between MMP-9 and cardiac T2*. MMP-9 seems to be a useful marker in SCD patients. Patients with serum ferritin > 1000 ng/ml, recurrent VOC > 5 /year had significantly higher MMP-9 serum levels than others.


2014 ◽  
Vol 89 (7) ◽  
pp. 678-683 ◽  
Author(s):  
Antonella Meloni ◽  
Mammen Puliyel ◽  
Alessia Pepe ◽  
Vasili Berdoukas ◽  
Thomas D. Coates ◽  
...  

Hematology ◽  
2013 ◽  
Vol 2013 (1) ◽  
pp. 447-456 ◽  
Author(s):  
John Porter ◽  
Maciej Garbowski

Abstract The aims of this review are to highlight the mechanisms and consequences of iron distribution that are most relevant to transfused sickle cell disease (SCD) patients and to address the particular challenges in the monitoring and treatment of iron overload. In contrast to many inherited anemias, in SCD, iron overload does not occur without blood transfusion. The rate of iron loading in SCD depends on the blood transfusion regime: with simple hypertransfusion regimes, rates approximate to thalassemia major, but iron loading can be minimal with automated erythrocyte apheresis. The consequences of transfusional iron overload largely reflect the distribution of storage iron. In SCD, a lower proportion of transfused iron distributes extrahepatically and occurs later than in thalassemia major, so complications of iron overload to the heart and endocrine system are less common. We discuss the mechanisms by which these differences may be mediated. Treatment with iron chelation and monitoring of transfusional iron overload in SCD aim principally at controlling liver iron, thereby reducing the risk of cirrhosis and hepatocellular carcinoma. Monitoring of liver iron concentration pretreatment and in response to chelation can be estimated using serum ferritin, but noninvasive measurement of liver iron concentration using validated and widely available MRI techniques reduces the risk of under- or overtreatment. The optimal use of chelation regimes to achieve these goals is described.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4943-4943
Author(s):  
Rasha I Ahmad ◽  
Sara Keyrouz ◽  
Mariam Arabi ◽  
Fadi Bitar ◽  
Wael al Jaroudi ◽  
...  

Abstract In sickle cell disease (SCD), transfusions improve blood flow by reducing the proportion of red cells capable of forming sickle hemoglobin polymer. The major and unavoidable complication of transfusions in SCD is iron overload. Patients with significant transfusion load and iron siderosis, often have iron deposit into multi organs, including liver, pancreas and heart. However, patients with SCD may be relatively protected from iron mediated cardiac toxicity as compared to patients with thalassemia and similar transfusion load. Nonetheless while patients with SCD have less iron deposition in the heart it is presumed that severe loading will eventually lead to cardiac involvement. We report here two patients with scd with severe iron overload who had no cardiac involvement. These are an 18 year old female and her 20 year old male sibling, known to have SCD (HbSS) with significant blood transfusions history, once a month or every two weeks for 12 years duration. Both had undergone splenectomy, and multiple hospitalizations for pain crises and acute chest syndrome. They had received intermittent iron chelation therapy for only 2 years. Examination revealed marked hepatomegaly and highly elevated ferritin levels, 11964ng/ml and 7098ng/ml respectively, suggestive of iron overload. Both patients had unremarkable electrocardiogram and echocardiogram. SGPT and SGOT are normal. Both patients are below the 5thpercentile for height, and l the 18 year old girl is pre-pubertal, has growth hormone deficiency and is on treatment. Cardiac, liver and pancreas magnetic resonance imaging with T2* showed normal cardiac structure and function without siderosis ( heart T2*32 ms and 35 ms in the female and male siblings, respectively [normal >20 ms]). There was however considerable liver siderosis with estimated liver iron content 16.6±4.4 mg/g dry weight (female sibling) and 13.9±1.8 mg/g dry weight (male sibling). The corresponding R2* were 646±165 HZ and 541±62 Hz, respectively. Also, there was mild to moderate pancreatic siderosis in the 18 year old female (R2* 111 HZ) and mild pancreatic siderosis in her sibling (R2* 55 Hz) These two cases while consistent with what has been reported are unusual because of the degree of iron ovreloead. It is an unexepected finding that despite such extensive iron deposits in the liver, there is no evidence of cardiac iron. It thus seems that in patients with sickle cell disease, even with extensive liver siderosis and endocrine dysfunction there is sparing of the heart. Collecting and studying such cases may shed light on the mecahins of cardiac protection from iron overload in sickle cell disease. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Mohsen Saleh ElAlfy ◽  
Ahmed Samir Ibrahim ◽  
Ghada Samir Ibrahim ◽  
Hanaa Midhat Abdel Gader Hussein ◽  
Hend Galal Eldeen Mohammed ◽  
...  

Abstract Children with sickle cell disease (SCD) are at a high risk for neurocognitive impairment. We aim to quantitatively measure cerebral tissue R2* to investigate the brain iron deposition in children and young adults with SCD in comparison to beta thalassemia major (BTM) and healthy controls and evaluate its impact on neurocognitive functions in patients with SCD. Thirty-two SCD, fifteen BTM and eleven controls were recruited. Multi-echo fast-gradient echo sequence brain MRI was performed and brain R2* values of both caudate and thalamic regions were calculated. SCD patients were examined for the neurocognitive functions. SCD had high iron overload 0.30±0.12 mg/kg/day. 68.9% of SCD had under- threshold IQ, 12.5% had moderate to severe anxiety and 60.8% had depression. There was no differences between SCD, BTM and controls in brain MRI except that left thalamus R2* higher in BTM than both SCD and controls (p=0.032). Mean right caudate R2* was higher in female than male (p=0.044). No significant association between brain R2* and LIC or heart R2* values in SCD. Left caudate R2* directly correlate with age and HbS%, negative correlate with HbA% while right thalamus R2* negatively correlate with transfusion index and among SCD patients. Conclusion: Neurocognitive dysfunction in SCD could not be explained solely by brain iron overload.


F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 1108
Author(s):  
Khaled Salama ◽  
Amina Abdelsalam ◽  
Hadeel Seif Eldin ◽  
Eman Youness ◽  
Yasmeen Selim ◽  
...  

Background: Cardiac, hepatic and pancreatic T2* measured by magnetic resonance imaging (MRI) has been proven to be an accurate and non-invasive method for measuring iron overload in iron overload conditions. There is accumulating evidence that pancreatic iron can predict cardiac iron in young children because the pancreas loads earlier than the heart. The aim of our study was to investigate cardiac function and cardiac iron and their relation to pancreatic iron among patients with β-thalassaemia major (βTM) and sickle cell disease (SCD). Methods: 40 βTM and 20 transfusion-dependant SCD patients were included along with 60 healthy age-matched controls. Echocardiography and Tissue Doppler Imaging were performed for all subjects as well as the control group.  Hepatic, cardiac and pancreatic iron overload in cases were assessed by MRI T2*. Results: The study group consisted of 40 βTM and 20 transfusion dependant SCD patients with mean age 13.7 years and mean frequency of transfusion/year 12. Mean cardiac T2* was 32.9 ms and mean myocardial iron concentration was 0.7 mg/g; One patient had cardiac iron overload of moderate severity. Mean pancreatic T2* was 22.3 ms with 20 patients having mild pancreatic iron overload. Pancreatic T2* correlated positively with main pulmonary artery diameter (p=0.046), peak late diastolic velocity at septal mitral annulus (p=0.038), peak early diastolic velocity at tricuspid annulus (p=0.001) and mitral annular plane systolic excursion (p=0.01); and negatively with end systolic pulmonary artery pressure (p=0.007). We couldn’t test the predictability of pancreatic T2* in relation to cardiac T2* as only one patient had cardiac T2*<20 ms. Conclusion: Assessment of pancreatic T2* in multi-transfused patients with βTM and SCD can predict myocardial dysfunction. No direct relation between pancreatic iron and cardiac siderosis was detected.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1531-1531
Author(s):  
Laurel Mendelsohn ◽  
Anitaben Tailor ◽  
Gregory J Kato

Abstract Abstract 1531 Poster Board I-554 Placental Growth Factor (PlGF) is a functional cytokine in the vascular endothelial growth factor (VEGF) family that generally promotes angiogenesis, depending on the specific context, and can also promote atherogenesis. Produced in erythroid cells, its level in patients with sickle cell disease (SCD) has been previously related to the rate of erythropoiesis. We evaluated PlGF plasma levels in SCD patients by ELISA, and related it to biomarkers of pulmonary hypertension (PH), an emerging and serious complication of SCD linked to early mortality. We find that PlGF levels are significantly higher in SCD (n=95) than healthy African American control subjects (n=19) (median 16.6 vs. 2.1 pg/mL, p<0.001). PlGF levels were higher in SCD patients with elevated pulmonary pressure (normal pulmonary pressure vs. mildly elevated vs. highly elevated: medians 13.7 vs. 16.7 vs. 19.8 pg/mL, p<0.0001). Supporting a linkage to rate of hemolysis, PlGF correlated with LDH (p=0.001) and inversely with hemoglobin level (p<0.0001). Suggesting a link to inflammation, PlGF correlated significantly with C-reactive protein (p=0.001) and erythrocyte sedimentation rate (p<0.001). PlGF correlated with markers of iron overload, including ferritin, transferrin saturation and inversely with transferrin (all p<0.001). Finally, PlGF correlated with markers of hepatic dysfunction, including low albumin and high direct bilirubin (p<0.001). We found significantly higher PlGF levels in SCD patients taking hydroxyurea compared to those not taking it (median 17.4 vs. 14.0 pg/ml, p<0.01). Confirming that hydroxyurea increases PlGF levels, in a separate cohort of seven patients, PlGF levels rose significantly from their baseline values after initiating hydroxyurea (median approx 22 vs. 27, p<0.05). Our data suggest that elevated PlGF level is associated with PH in patients with SCD, and PlGF is correlated with severity of hemolysis, inflammation, iron overload and hepatic dysfunction. Considering the variable evidence in the literature for either stimulating or inhibiting angiogenesis, it is not clear whether pathologic elevation of PlGF may be mediating pulmonary hypertension, or perhaps conversely providing an adaptive response to vascular damage. It has been suggested by Perelman et al. that PlGF may mediate leukocyte activation that might promote disease severity in SCD. However, hydroxyurea, which tends to ameliorate SCD complications, stimulates PlGF level in an unexpected manner, possibly related to the ability of hydroxyurea to stimulate erythropoietin production, which might in turn induce PlGF. Further research is needed to reconcile the role of PlGF in PH in SCD. Disclosures Tailor: Mesoscale: Employment.


Sign in / Sign up

Export Citation Format

Share Document