Hematopoietic Stem Cell Function Is Regulated By Hormonal and Epigenetic Factors

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1194-1194
Author(s):  
Aparna Vasanthakumar ◽  
Hayley Zullow ◽  
Lucy A Godley

Abstract Gender-specific hormones have been known to play a role in hematopoietic function for some time. For example, treatment with estrogens suppresses B lymphocyte production in murine bone marrow, and hormonally compromised mice undergoing hematopoietic stem cell transplantation demonstrate enhanced immune reconstitution. Furthermore, androgens have been employed as therapy for bone marrow failure syndromes. Despite these experimental observations and clinical practices, the precise molecular mechanism by which gender-specific hormones influence physiology is not understood. To test if epigenetic modifications could alter HSC function in a gender-specific manner, we compared the engraftment potential of hematopoietic stem cells (HSCs) with altered DNA methylation patterns in female versus male recipients. We used DNMT3B7 transgenic mice as the HSC source. Our laboratory demonstrated that the introduction of DNMT3B7, a truncated DNMT3B isoform commonly expressed in cancer cells, impedes normal embryonic development. Homozygous DNMT3B7 transgenic mice have developmental defects similar to the Immunodeficiency, Centromeric instability, Facial anomalies syndrome, and demonstrate lymphopenia and defective craniofacial development. These physiological defects are accompanied by global DNA hypermethylation and disruption in DNA methylation patterns (Shah MY et al, Cancer Res. 2010). Since DNMT3B7 homozygous mice fail to survive past the day of birth, we used a transplantation model to assay the effect of DNMT3B7 on hematopoiesis. We found large differences in engraftment potential when cells expressing DNMT3B7 were transplanted into female versus male recipients. Pancytopenia occurred at two weeks, with anemia and leucopenia persisting until eight weeks post-transplantation when females received DNMT3B7 homozygous cells. However, cells from wild-type (WT) embryos engrafted normally regardless of recipient gender. We also observed that oophorectomized female recipients engrafted DNMT3B7-expressing cells normally. Interestingly, we found an improved engraftment of WT cells in these oophorectomized mice, suggesting that female hormones repress hematopoiesis. In competitive transplantation experiments to determine HSC function, the CD45.1 and CD45.2 alleles were used to distinguish competitor and experimental cells respectively. We observed that DNMT3B7-expressing CD45.2+ cells were out-competed by WT CD45.1+ cells within female recipients, although there were 4-fold more transgenic cells than CD45.1+ competitor cells. Because our previous studies suggested that DNMT3B7 functions as a dominant negative isoform of Dnmt3b, we compared our results with DNMT3B7-expressing cells to those observed with competitive transplants using Dnmt3b knockout cells. Cells from WT, heterozygous Dnmt3b, and homozygous Dnmt3b knockout embryos had similar engraftment potentials in female recipients and were not out-competed by competitor WT CD45.1+ cells, similar to previous observations in a distinct Dnmt3b knockout mouse model (Challen GA et al, Nat Genet. 2011). DNMT3B7 homozygous embryos had significantly fewer numbers of HSCs than WT embryos, as assayed by the LSK (Lineage-, Sca1+, Kit+) and SLAM (CD48, CD150) set of markers. We observed a dose-response relative to DNMT3B7 content, with DNMT3B7 homozygous embryos having the fewest number of HSCs, and DNMT3B7 hemizygous embryos having intermediate numbers of HSCs compared to WT embryos. These observations point to the dual influence of epigenetics and hormones on HSC function. Our hope is that we will be able to use our understanding of the molecular basis for the influence of hormonal milieu on hematopoiesis to augment stem/progenitor cell function in patients undergoing stem cell transplantation and chemotherapy. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2003 ◽  
Vol 102 (7) ◽  
pp. 2684-2691 ◽  
Author(s):  
Sergio Giralt ◽  
William Bensinger ◽  
Mark Goodman ◽  
Donald Podoloff ◽  
Janet Eary ◽  
...  

Abstract Holmium-166 1, 4, 7, 10-tetraazcyclododecane-1, 4, 7, 10-tetramethylenephosphonate (166Ho-DOTMP) is a radiotherapeutic that localizes specifically to the skeleton and can deliver high-dose radiation to the bone and bone marrow. In patients with multiple myeloma undergoing autologous hematopoietic stem cell transplantation two phase 1/2 dose-escalation studies of high-dose 166Ho-DOTMP plus melphalan were conducted. Patients received a 30 mCi (1.110 Gbq) tracer dose of 166Ho-DOTMP to assess skeletal uptake and to calculate a patient-specific therapeutic dose to deliver a nominal radiation dose of 20, 30, or 40 Gy to the bone marrow. A total of 83 patients received a therapeutic dose of 166Ho-DOTMP followed by autologous hematopoietic stem cell transplantation 6 to 10 days later. Of the patients, 81 had rapid and sustained hematologic recovery, and 2 died from infection before day 60. No grades 3 to 4 nonhematologic toxicities were reported within the first 60 days. There were 27 patients who experienced grades 2 to 3 hemorrhagic cystitis, only 1 of whom had received continuous bladder irrigation. There were 7 patients who experienced complications considered to be caused by severe thrombotic microangiopathy (TMA). No cases of severe TMA were reported in patients receiving in 166Ho-DOMTP doses lower than 30 Gy. Approximately 30% of patients experienced grades 2 to 4 renal toxicity, usually at doses targeting more than 40 Gy to the bone marrow. Complete remission was achieved in 29 (35%) of evaluable patients. With a minimum follow-up of 23 months, the median survival had not been reached and the median event-free survival was 22 months. 166Ho-DOTMP is a promising therapy for patients with multiple myeloma and merits further evaluation. (Blood. 2003;102:2684-2691)


2004 ◽  
Vol 22 (14) ◽  
pp. 2816-2825 ◽  
Author(s):  
Michael G. Kiehl ◽  
Ludwig Kraut ◽  
Rainer Schwerdtfeger ◽  
Bernd Hertenstein ◽  
Mats Remberger ◽  
...  

Purpose The role of unrelated allogeneic stem-cell transplantation in acute lymphoblastic leukemia (ALL) patients is still not clear, and only limited data are available from the literature. We analyzed factors affecting clinical outcome of ALL patients receiving a related or unrelated stem-cell graft from matched donors. Patients and Methods The total study population was 264 adult patients receiving a myeloablative allogeneic stem-cell transplant for ALL at nine bone marrow transplantation centers between 1990 and 2002. Of these, 221 patients receiving a matched related or unrelated graft were analyzed. One hundred forty-eight patients received transplantation in complete remission; 62 patients were in relapse; and 11 patients were refractory to chemotherapy before transplant. Fifty percent of patients received bone marrow, and 50% received peripheral blood stem cell from a human leukocyte antigen–identical related (n = 103), or matched unrelated (n = 118) donor. Results Disease-free survival (DFS) at 5 years was 28%, with 76 patients (34%) still alive (2.2 to 103 months post-transplantation), and 145 deceased (65 relapses, transplant-related mortality, 45%). We observed an advantage regarding DFS in favor of patients receiving transplantation during their first complete remission (CR) in comparison with patients receiving transplantation in or after second CR (P = .014) or who relapsed (P < .001). We observed a clear trend toward improved survival in favor of B-lineage ALL patients compared with T-lineage ALL patients (P = .052), and Philadelphia chromosome–positive patients had no poorer outcome than Philadelphia chromosome–negative patients. Total-body irradiation–based conditioning improved DFS in comparison with busulfan (P = .041). Conclusion Myeloablative matched related or matched unrelated allogeneic hematopoietic stem-cell transplantation in ALL patients should be performed in first CR.


2016 ◽  
Vol 8 ◽  
pp. 2016054 ◽  
Author(s):  
Hosein Kamranzadeh fumani ◽  
Mohammad Zokaasadi ◽  
Amir Kasaeian ◽  
Kamran Alimoghaddam ◽  
Asadollah Mousavi ◽  
...  

Background & objectives: Fanconi anemia (FA) is a rare genetic disorder caused by an impaired DNA repair mechanism which leads to an increased tendency toward malignancies and progressive bone marrow failure. The only curative management available for hematologic abnormalities in FA patients is hematopoietic stem cell transplantation (HSCT). This study aimed to evaluate the role of HSCT in FA patients.Methods: Twenty FA patients with ages of 16 or more who underwent HSCT between 2002 and 2015 enrolled in this study. All transplants were allogeneic and the stem cell source was peripheral blood and all patients had a full HLA-matched donor.Results: Eleven patients were female and 9 male (55% and 45%). Mean age was 24.05 years. Mortality rate was 50% (n=10) and the main cause of death was GVHD. Survival analysis showed an overall 5-year survival of 53.63% and 13 year survival of 45.96 % among patients.Conclusion: HSCT is the only curative management for bone marrow failure in FA patients and despite high rate of mortality and morbidity it seems to be an appropriate treatment with an acceptable long term survival rate for adolescent and adult group.


2014 ◽  
Vol 97 (12) ◽  
pp. e75-e77 ◽  
Author(s):  
Mathieu Meunier ◽  
Anne-Claire Manez ◽  
Aliénor Xhaard ◽  
Régis Peffault de Latour ◽  
Flore Sicre de Fontbrune ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document