scholarly journals Structural Basis for the Procofactor to Cofactor Transition in Human Factor V

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 253-253
Author(s):  
Shekhar Kumar ◽  
Wei Deng ◽  
Steven Stayrook ◽  
Renhao Li ◽  
Rodney M. Camire ◽  
...  

Abstract Factor V, the inactive precursor to factor Va, has a domain organization of A1-A2-B-A3-C1-C2. Factor Va is formed by the proteolytic excision of the central B domain, which resolves the molecule into a heterodimer (A1-A2/A3-C1-C2). Removal of the B domain enables the cofactor to engage factor Xa on phosphatidylserine-containing membranes, assemble prothrombinase and greatly enhance the rate of thrombin formation. Recent studies have shown a key role for a basic region (BR), which lies approximately in the center of the B domain, in enforcing procofactor properties in human factor V (hFV). Exogenously added recombinant BR fragments can bind with high affinity to a cofactor-like variant of human hFV (hFVDT), in which a large central portion of the B domain has been deleted, interfere with Xa binding and restore procofactor-like properties. Biochemical evidence suggests that BR binding results from its interaction with an acidic region (AR2) at the C terminus of the B domain and likely also an acidic sequence (AR1) at the C terminus of the A2 domain. Our recent crystal structure of hFVDT provided the first structural evidence that AR1 and AR2, ~800 residues apart in the primary structure of hFV, are positioned adjacent to each other and could plausibly form an extended surface for high affinity BR binding to reconstitute a tripartite procofactor-regulatory region (AR1/BR/AR2). However, the lack of BR in hFVDT precluded independent structural verification of this possibility. In a computational approach, we created a molecular model for the 58 residue BR peptide. The top scoring three-dimensional models of the 58 residue BR peptide showed a helix-loop arrangement, contrary to the general belief that the B domain lacks structured regions. The best scoring BR peptide model was used for ab initio docking studies using the crystal structure of hFVDT to predict possible binding sites using PIPER and ClusPro. The most highly represented and statistically probable solutions showed the BR peptide in intimate contact with juxtaposed surfaces provided by AR1 and AR2. Interestingly, the docked BR peptide contacted regions in AR1 and on the A2 domain implicated in FXa binding in the structure of Pseudonaja textilis FV bound to snake venom factor X. Computational predictions were tested using hydrogen-deuterium exchange detected by protein fragmentation and mass spectroscopy (HDX). Proteolytic fragmentation of hFVDT and fragment detection by LC-MS was optimized to cover >95% of its 1514 residues with an average redundancy of 4.27 peptides/residue. Only 4 or 5 segments of ~10-15 residue length were not covered. Addition of the BR peptide had minor effects on amide proton exchange over the bulk of the molecule. However, BR peptide binding was accompanied by reductions in amide proton exchange rates of ~7-30-fold in immediately adjacent regions of hFVDT corresponding to sequences within A2 (626-634), AR1 (658-695), AR2 (872-881) and A3 (983-995). BR peptide binding to hFVDT is accompanied by perturbations in these spatially adjacent regions covering a small fraction of the surface area at approximately the 3 o'clock position with the molecule in the standard orientation. The marked agreement between the HDX findings and the computational docking studies supports our proposal that the BR engages an extended surface contributed by AR1 and AR2 to form a tripartite procofactor-regulatory region. The interaction of BR with AR1 and a small region in A2, both implicated in binding Xa, potentially explains how the BR might restrict Xa binding to the procofactor. Destabilization of BR binding by proteolysis at the C terminus of AR2 is envisioned to result in cofactor formation by releasing the BR and revealing sites responsible for binding Xa. Our findings provide a structural explanation for the long standing puzzle of factor V activation and pave the way for further definition of mechanistic details of procofactor and cofactor function. They have implications for how interactions with TFPIα through the basic region at its C-terminus might regulate FV(a). They also reveal previously unanticipated strategies to modulate functions of hFV and hFVa for therapeutic gain. Disclosures Camire: Pfizer: Consultancy, Patents & Royalties, Research Funding; Bayer: Consultancy; Novo Nordisk: Research Funding; sparK: Membership on an entity's Board of Directors or advisory committees, Patents & Royalties. Krishnaswamy:Portola: Research Funding; Janssen: Consultancy, Research Funding.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 121-121
Author(s):  
Shekhar Kumar ◽  
Steven Stayrook ◽  
Rodney M. Camire ◽  
Sriram Krishnaswamy

Abstract Coagulation factor V (FV) circulates as an inactive procofactor with a domain organization of A1-A2-B-A3-C1-C2. Factor Va (FVa), the active cofactor, is produced in steps essential for rapid thrombin formation, by the proteolytic excision of the B domain which resolves the molecule into a heterodimer (A1-A2/A3-C1-C2). Removal of the B domain imbues the resulting FVa with the ability to bind factor Xa (Xa) on a membrane surface to assemble prothrombinase and greatly enhance the rate of thrombin formation. A recombinant variant of human factor V (HFVDT) with a shortened B domain exhibits constitutive cofactor activity. Cofactor activity even without proteolysis arises from its lack of a conserved basic region (BR) located in the large B domain of FV. Exogenously added BR peptide binds tightly to HFVDT in a Ca2+-dependent fashion and restores procofactor-like properties. The BR is proposed to restrict Xa binding and cofactor function by interacting with an acidic region at the C terminus of the B domain (AR2) and likely also an acidic sequence at the C terminus of the A2 domain (AR1). These two sequences are ~800 residues apart in FV with no structural information to explain how AR1 and AR2 might cooperate to engage the BR in the central portion of the B domain to autoinhibit FV. The available structures of an inactivated form of bovine factor Va (BFVai), of a FV ortholog from Pseudonaja textilis (FVPtex) and a lower resolution structure of B domainless human factor VIII (HFVIII) shed no light on this problem. We obtained diffraction quality crystals of HFVDT complexed with a single chain antibody (scFvE10) directed to FVa. Crystals were not obtained in the absence of scFvE10. The crystals diffracted to a resolution of 2.8 Å and the structure was solved by molecular replacement. The refined structure shows high similarity to BFVai, FVPtex and HFVIII. Insufficient electron density precluded the placement of scFvE10 in the modeled structure. The three homologous A domains in HFVDT adopt a typical cupredoxin-fold with the A domains arranged in a pseudo-three-fold axis of symmetry. The two C domains are cylindrical and oriented side-by-side to form the base of the A domain rosette. These features are equivalent to those seen in structures of BFVai, HFVIII and FVPtex. Two bound calcium ions are evident, one in A1 and the other in the A3 domain. The most important feature newly revealed in the structure of HFVDT is the close spatial proximity of AR1 and AR2 at the outer edge of the A domain rosette at the 3 o'clock position in the standard orientation. These acidic regions form adjacently positioned surfaces in spite of being bisected by the long primary sequence of the intervening B domain. Our observations provide the first structural evidence that the two distinct acidic regions come together in space to provide an extended surface. This provides a plausible explanation for how the BR in the middle of the B domain may bind to both AR1 and AR2 to restrict cofactor function in FV. The need for this extended but bipartite acidic surface, to which the BR may bind, also provides a plausible explanation for how proteolytic cleavage at position 1545 at the C terminus of AR2 destabilizes BR binding and results in cofactor formation. The Ca2+-stabilized loop in the A3 domain abuts the bisegmental acidic cluster potentially explaining why BR binding to HFVDT is strongly dependent on Ca2+. In the structure of FVPtex bound to snake venom factor X, AR1 extends away from the body of the cofactor to make intimate contacts with factor X. If this is mirrored in human prothrombinase, then our findings provide a structure-based model to phrase the long-standing procofactor activation paradox. BR binding to the AR1/AR2 extended surface ties up surfaces necessary for Xa binding and restricts cofactor activity. Proteolytic processing of the B domain and probably most importantly following AR2 destabilizes the BR/AR1/AR2 complex to free up surfaces including AR1 necessary to support Xa binding. This model reconciles the biochemical evidence with structural findings to provide new insights into the role played by the BR/AR1/AR2 complex in restricting Xa binding and cofactor function in FV. It provides a platform to further explore mechanistic details of FV and FVa function and for the development of novel strategies to modulate their functions to regulate thrombin formation for therapeutic gain. Disclosures Camire: Pfizer: Consultancy, Patents & Royalties, Research Funding; Novo Nordisk: Research Funding; Spark Therapeutics: Other: Scientific advisory board.


Author(s):  
Helene Launay ◽  
Hui Shao ◽  
Olivier Bornet ◽  
Francois-Xavier Cantrelle ◽  
Regine Lebrun ◽  
...  

In the chloroplast, Calvin-Benson-Bassham enzymes are active in the reducing environment imposed in the light via the electrons from the photosystems. In the dark these enzymes are inhibited, and this regulation is mainly mediated via oxidation of key regulatory cysteine residues. CP12 is a small protein that plays a role in this regulation with four cysteine residues that undergo a redox transition. Using amide-proton exchange with solvent measured by nuclear magnetic resonance (NMR) and mass-spectrometry, we confirmed that reduced CP12 is intrinsically disordered. Using real-time NMR, we showed that the oxidation of the two disulfide bridges are simultaneous. In oxidized CP12, the C23-C31 pair is in a region that undergoes a conformational exchange in the NMR-intermediate timescale. The C66-C75 pair is in the C-terminus that folds into a stable helical turn. We confirmed that these structural states exist in a physiologically relevant environment that is, in cell extract from Chlamydomonas reinhardtii. Consistent with these structural equilibria, the reduction is slower for the C66-C75 pair compared to the C23-C31 pair. Finally, the redox mid-potentials for the two cysteine pairs differ and are similar to those found for phosphoribulokinase and glyceraldehyde 3-phosphate dehydrogenase, that we relate to the regulatory role of CP12.


1998 ◽  
Vol 76 (2-3) ◽  
pp. 334-340 ◽  
Author(s):  
Irena Ekiel ◽  
Denis Banville ◽  
Shi Hsiang Shen ◽  
Kalle Gehring

Amide hydrogen-deuterium exchange rates were measured in the PDZ2 domain from human phosphatase hPTP1E by 1H-15N heteronuclear NMR spectroscopy. Protection factors were calculated for the slowly exchanging hydrogens in both the free PDZ2 domain and its complex with an octapeptide peptide, R-N-E-I-Q-S-L-V, derived from the C-terminus of the Fas receptor. Aside from a short α-helical region α1 (amino acids A-45 to D-49), the pattern of highly protected amides correlated well with the presence of hydrogen bonds in elements of the secondary structure. Hydrogen-bonded amides showed relatively fast exchange rates with half-lives of less than 9 h at pD 7.6 and 8°C. Protection factors, calculated as the ratio of theoretical (denatured) and observed exchange rates, showed less dispersion in maximal values than did the actual exchange rates. This behavior and the large pH dependence of the exchange rates suggest that amide exchange is close to the EX2 limit. In this limit, exchange of the most protected amides occurs through a global unfolding mechanism. The free energy of the unfolding calculated from the largest protection factors is 4.8 ± 0.4 kcal/mol (1 cal = 4.184 J). This ΔG° closely matches the value measured by experiments with guanidine hydrochloride and fluorescence emission spectroscopy. Peptide binding to PDZ2 resulted in mostly global effects and stabilized the folded domain by 1.4 kcal/mol.Key words: PDZ2 from hPTP1E, amide exchange, ligand binding, NMR.


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 701
Author(s):  
Helene Launay ◽  
Hui Shao ◽  
Olivier Bornet ◽  
Francois-Xavier Cantrelle ◽  
Regine Lebrun ◽  
...  

In the chloroplast, Calvin–Benson–Bassham enzymes are active in the reducing environment created in the light by electrons from the photosystems. In the dark, these enzymes are inhibited, mainly caused by oxidation of key regulatory cysteine residues. CP12 is a small protein that plays a role in this regulation with four cysteine residues that undergo a redox transition. Using amide-proton exchange with solvent, measured by nuclear magnetic resonance (NMR) and mass-spectrometry, we confirmed that reduced CP12 is intrinsically disordered. Using real-time NMR, we showed that the oxidation of the two disulfide bridges is simultaneous. In oxidized CP12, the C23–C31 pair is in a region that undergoes a conformational exchange in the NMR-intermediate timescale. The C66–C75 pair is in the C-terminus that folds into a stable helical turn. We confirmed that these structural states exist in a physiologically relevant environment: a cell extract from Chlamydomonas reinhardtii. Consistent with these structural equilibria, the reduction is slower for the C66–C75 pair than for the C23–C31 pair. The redox mid-potentials for the two cysteine pairs differ and are similar to those found for glyceraldehyde 3-phosphate dehydrogenase and phosphoribulokinase, consistent with the regulatory role of CP12.


2013 ◽  
Vol 22 (10) ◽  
pp. 1313-1319 ◽  
Author(s):  
Austin E. Smith ◽  
Mohona Sarkar ◽  
Gregory B. Young ◽  
Gary J. Pielak

1995 ◽  
Vol 108 (3) ◽  
pp. 220-234 ◽  
Author(s):  
Z.W. Zheng ◽  
M.R. Gryk ◽  
M.D. Finucane ◽  
O. Jardetzky

Sign in / Sign up

Export Citation Format

Share Document