conformational exchange
Recently Published Documents


TOTAL DOCUMENTS

177
(FIVE YEARS 45)

H-INDEX

27
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Gogulan Karunanithy ◽  
Tairan Yuwen ◽  
Lewis E Kay ◽  
D Flemming Hansen

Macromolecules often exchange between functional states on timescales that can be accessed with NMR spectroscopy and many NMR tools have been developed to characterise the kinetics and thermodynamics of the exchange processes, as well as the structure of the conformers that are involved. However, analysis of the NMR data that report on exchanging macromolecules often hinges on complex least-squares fitting procedures as well as human experience and intuition, which, in some cases, limits the widespread use of the methods. The applications of deep neural networks (DNNs) and artificial intelligence have increased significantly in the sciences, and recently, specifically, within the field of biomolecular NMR, where DNNs are now available for tasks such as the reconstruction of sparsely sampled spectra, peak picking, and virtual decoupling. Here we present a DNN for the analysis of chemical exchange saturation transfer (CEST) data reporting on two- or three-site chemical exchange involving sparse state lifetimes of between approximately 3 - 60 ms, the range most frequently observed via experiment. The work presented here focuses on the 1H CEST class of methods that are further complicated, in relation to applications to other nuclei, by anti-phase features. The developed DNNs accurately predict the chemical shifts of nuclei in the exchanging species directly from anti-phase 1HN CEST profiles, along with an uncertainty associated with the predictions. The performance of the DNN was quantitatively assessed using both synthetic and experimental anti-phase CEST profiles. The assessments show that the DNN accurately determines chemical shifts and their associated uncertainties. The DNNs developed here do not contain any parameters for the end-user to adjust and the method therefore allows for autonomous analysis of complex NMR data that report on conformational exchange.


2021 ◽  
Author(s):  
Romeo Cosimo Arrigo Dubini ◽  
Eva Korytiaková ◽  
Thea Schinkel ◽  
Pia Heinrichs ◽  
Thomas Carell ◽  
...  

5-carboxycytosine (5caC) is a rare epigenetic modification found in nucleic acids of all domains of life. Despite its sparse genomic abundance, 5caC is presumed to play essential regulatory roles in transcription, maintenance and base-excision processes in DNA. In this work, we utilize nuclear magnetic resonance (NMR) spectroscopy to address the effects of 5caC incorporation into canonical DNA strands at multiple pH and temperature conditions. Our results demonstrate that 5caC has a pH-dependent global destabilizing and a base-pair mobility enhancing local impact on dsDNA, albeit without any detectable influence on the ground-state B-DNA structure. Measurement of hybridization thermodynamics and kinetics of 5caC-bearing DNA duplexes highlighted how acidic environment (pH 5.8 and 4.7) destabilizes the double-stranded structure by ≈10-20 kJ mol-1 at 37 °C when compared to the same sample at neutral pH. Protonation of 5caC results in a lower activation energy for the dissociation process and a higher barrier for annealing. Studies on conformational exchange on the µs time scale regime revealed a sharply localized base-pair motion involving exclusively the modified site and its immediate surroundings. By direct comparison with canonical and 5-formylcytosine (5fC)-edited strands, we were able to address the impact of the two most oxidized naturally occurring cytosine derivatives in the genome. These insights on 5caC's subtle sensitivity to acidic pH contribute to the long standing questions of its capacity as a substrate in base excision repair processes and its purpose as an independent, stable epigenetic mark.


Structure ◽  
2021 ◽  
Author(s):  
Olivier Boisvert ◽  
Danny Létourneau ◽  
Patrick Delattre ◽  
Cynthia Tremblay ◽  
Émilie Jolibois ◽  
...  

2021 ◽  
Vol 2 (2) ◽  
pp. 777-793
Author(s):  
Christopher A. Waudby ◽  
John Christodoulou

Abstract. Transverse nuclear spin relaxation is a sensitive probe of chemical exchange on timescales on the order of microseconds to milliseconds. Here we present an experiment for the simultaneous measurement of the relaxation rates of two quadruple-quantum transitions in 13CH3-labelled methyl groups. These coherences are protected against relaxation by intra-methyl dipolar interactions and so have unexpectedly long lifetimes within perdeuterated biomacromolecules. However, these coherences also have an order of magnitude higher sensitivity to chemical exchange broadening than lower order coherences and therefore provide ideal probes of dynamic processes. We show that analysis of the static magnetic field dependence of zero-, double- and quadruple-quantum Hahn echo relaxation rates provides a robust indication of chemical exchange and can determine the signed relative magnitudes of proton and carbon chemical shift differences between ground and excited states. We also demonstrate that this analysis can be combined with established Carr–Purcell–Meiboom–Gill (CPMG) relaxation dispersion measurements, providing improved precision in parameter estimates, particularly in the determination of 1H chemical shift differences.


Author(s):  
Matthias Dreydoppel ◽  
Roman J. Lichtenecker ◽  
Mikael Akke ◽  
Ulrich Weininger

AbstractAromatic side chains are attractive probes of protein dynamic, since they are often key residues in enzyme active sites and protein binding sites. Dynamic processes on microsecond to millisecond timescales can be studied by relaxation dispersion experiments that attenuate conformational exchange contributions to the transverse relaxation rate by varying the refocusing frequency of applied radio-frequency fields implemented as either CPMG pulse trains or continuous spin-lock periods. Here we present an aromatic 1H R1ρ relaxation dispersion experiment enabling studies of two to three times faster exchange processes than achievable by existing experiments for aromatic side chains. We show that site-specific isotope labeling schemes generating isolated 1H–13C spin pairs with vicinal 2H–12C moieties are necessary to avoid anomalous relaxation dispersion profiles caused by Hartmann–Hahn matching due to the 3JHH couplings and limited chemical shift differences among 1H spins in phenylalanine, tyrosine and the six-ring moiety of tryptophan. This labeling pattern is sufficient in that remote protons do not cause additional complications. We validated the approach by measuring ring-flip kinetics in the small protein GB1. The determined rate constants, kflip, agree well with previous results from 13C R1ρ relaxation dispersion experiments, and yield 1H chemical shift differences between the two sides of the ring in good agreement with values measured under slow-exchange conditions. The aromatic1H R1ρ relaxation dispersion experiment in combination with the site-selective 1H–13C/2H–12C labeling scheme enable measurement of exchange rates up to kex = 2kflip = 80,000 s–1, and serve as a useful complement to previously developed 13C-based methods.


2021 ◽  
Author(s):  
Christopher Andrew Waudby ◽  
John Christodoulou

Abstract. Transverse nuclear spin relaxation is a sensitive probe of chemical exchange on timescales on the order of microseconds to milliseconds. Here we present an experiment for the simultaneous measurement of the relaxation rates of two quadruple-quantum transitions in 13CH3-labelled methyl groups. These coherences are protected against relaxation by intra-methyl dipolar interactions, and so have unexpectedly long lifetimes within perdeuterated biomacromolecules. However, these coherences also have an order of magnitude higher sensitivity to chemical exchange broadening than lower order coherences, and therefore provide ideal probes of dynamic processes. We show that analysis of the static magnetic field dependence of zero-, double- and quadruple-quantum Hahn echo relaxation rates provides a robust indication of chemical exchange, and can determine the signed relative magnitudes of proton and carbon chemical shift differences between ground and excited states. We also demonstrate that this analysis can be combined with established CPMG relaxation dispersion measurements, providing improved precision in parameter estimates, particularly in the determination of 1H chemical shift differences.


Sign in / Sign up

Export Citation Format

Share Document