scholarly journals Fibrinogen competes with von Willebrand factor for binding to the glycoprotein IIb/IIIa complex when platelets are stimulated with thrombin

Blood ◽  
1984 ◽  
Vol 64 (4) ◽  
pp. 797-800 ◽  
Author(s):  
HR Gralnick ◽  
SB Williams ◽  
BS Coller

Two monoclonal antibodies--one that blocks ristocetin-induced platelet binding of von Willebrand factor to glycoprotein Ib and one that blocks adenosine diphosphate-induced binding of fibrinogen to the glycoprotein IIb/IIIa complex--were used to assess the binding site(s) for von Willebrand factor when platelets are stimulated with thrombin or adenosine diphosphate (ADP). Neither agonist induced binding of von Willebrand factor to glycoprotein Ib. ADP and thrombin induced von Willebrand factor binding exclusively to the glycoprotein IIb/IIIa complex. The results of the site of binding of von Willebrand factor with thrombasthenic platelets were consistent with the data obtained with the monoclonal antibodies and normal platelets. Human fibrinogen caused complete inhibition of thrombin-induced von Willebrand factor binding to normal platelets at concentrations considerably below that found in normal plasma. We conclude that thrombin induces very little binding of exogenous von Willebrand factor to platelets at normal plasma fibrinogen levels.

Blood ◽  
1984 ◽  
Vol 64 (4) ◽  
pp. 797-800 ◽  
Author(s):  
HR Gralnick ◽  
SB Williams ◽  
BS Coller

Abstract Two monoclonal antibodies--one that blocks ristocetin-induced platelet binding of von Willebrand factor to glycoprotein Ib and one that blocks adenosine diphosphate-induced binding of fibrinogen to the glycoprotein IIb/IIIa complex--were used to assess the binding site(s) for von Willebrand factor when platelets are stimulated with thrombin or adenosine diphosphate (ADP). Neither agonist induced binding of von Willebrand factor to glycoprotein Ib. ADP and thrombin induced von Willebrand factor binding exclusively to the glycoprotein IIb/IIIa complex. The results of the site of binding of von Willebrand factor with thrombasthenic platelets were consistent with the data obtained with the monoclonal antibodies and normal platelets. Human fibrinogen caused complete inhibition of thrombin-induced von Willebrand factor binding to normal platelets at concentrations considerably below that found in normal plasma. We conclude that thrombin induces very little binding of exogenous von Willebrand factor to platelets at normal plasma fibrinogen levels.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1444-1444
Author(s):  
Christopher J. Ng ◽  
Keith R. McCrae ◽  
Junmei Chen ◽  
Michael Wang ◽  
Marilyn J. Manco-Johnson ◽  
...  

Abstract Background: The antiphospholipid syndrome (APS) is characterized by predisposition to thrombosis. The cause for this pathology is poorly understood but is likely multifactorial, involving activation of blood cells and vasculature. The role that anti-β2-GPI antibodies play in von Willebrand factor (VWF) release from endothelial cells, VWF-platelet binding, and VWF cleavage by ADAMTS13 has not been well characterized in APS. We decided to study the effect of these antibodies on expressed ultra large VWF strings (ULVWF strings) that bind platelets (VWF-PLT strings) under flow to better understand platelet–VWF binding and ADAMTS13 regulation in APS. Hypothesis: We hypothesized that Anti-β2-GPI antibodies could induce VWF release from endothelial cells and modulate VWF’s prothombotic effect through alterations in VWF-Platelet binding and VWF cleavage by ADAMTS13. Methods: Human umbilical vein endothelial cells were seeded in 96-well plates/flow chambers prepared with a collagen Type I substrate for static/flow experiments, respectively. Static assays: Cells were incubated for 1 hr with Anti-β2-GPI or control antibodies and the conditioned media was assayed for VWF by ELISA, normalized to normal plasma. Flow Assay Analysis: After stimulation with agonist and perfusion with a platelet suspension, platelets bound to ULVWF in a string pattern were quantified via brightfield microscopy. Images of chambers were captured and VWF-PLT string-units (defined as a string length of 25μM) per slide were quantified. To minimize bias, image acquisition was standardized and the investigator was blinded at time of image acquisition/analysis. β2-GPI Flow assays: Endothelial cells in flow chambers were stimulated with 50ng/mL of phorbol myristate acetate (PMA), and a solution of fixed platelets with β2-GPI or β2-GPI+Anti-β2-GPI were perfused prior to image acquisition. ADAMTS13 assays: After stimulation with 25ng/mL PMA and perfusion with fixed platelets, images were acquired. Then control/patient plasma was perfused over formed strings. Images taken after plasma perfusion were quantified and compared to images prior to plasma perfusion. Data are shown as mean +/- SEM, and significance was determined as p<0.05 by student’s t-test or Mann-Whitney U Test, when appropriate. Results: Static Assays: Compared to control human IgG (8.28 +/- 3.34 mU/mL), VWF release was increased in the presence of two patient-derived Anti-β2-GPI antibodies, APS25-6 Anti-β2-GPI, 35.73 +/- 7.83 mU/mL (P = 0.008) and APS203-2 Anti-β2-GPI, 34.08 +/- 7.119 mU/mL (P = 0.039). As compared to control rabbit IgG (15.80 +/- 7.12 mU/mL), a rabbit polyclonal Anti-β2-GPI antibody, R24-6, also demonstrated increased soluble VWF (43.16 +/- 9.60 mU/mL, P = 0.013) release. β2GPI Flow Assays:The presence of β2GPI (2µM) reduced String-unit formation from 50.10 +/-5.57 Sting-units/image to 20.98 +/- 2.05 String Units/image (P < 0.0001) as compared to buffer. Addition of goat Anti-β2-GPI antibody (1µM) increased the VWF-PLT string observed as compared to β2GPI (2µM), 30.09 +/- 1.83 String Units to 20.98 +/- 2.05 String Units (P = 0.012) indicating that an Anti-β2-GPI antibody partially reverses the effect of β2GPI on reducing VWF-PLT string formation. ADAMTS13 Assay:Compared to pooled normal plasma (ADAMTS13 Activity 100%) (4.57 +/- 0.60 String Units/image cleaved), there was a significant decrease in the amount of string units/image cleaved in two APS plasmas with Anti-β2-GPI antibodies, APS232-9 (-0.23 +/- 0.98, P = 0.0003) and APS227-9 (2.23 +/- 0.73, P = 0.0009). ADAMTS13 Activity of patient plasma was 98.37% and 83.97%, respectively. These results suggest an inhibitory role of APS plasma on the cleavage of ULVWF strings. Conclusions: Anti-β2-GPI antibodies and antiphospholipid syndrome plasma may contribute to the prothrombotic phenotype observed in APS by three mechanisms: 1) the increased release of VWF from endothelial cells after incubation with Anti-β2-GPI, 2) increased platelet binding to ULVWF strings likely mediated by interfering with β2GPI’s known inhibition of Gp1bα VWF-platelet binding, and 3) a reduced ability to cleave VWF-PLT strings by APS plasma, suggestive of ADAMTS13 inhibition that does not correlate with ADAMTS13 activity. Taken together, our results suggest that VWF and its modulation may contribute to the prothrombotic phenotype observed in the antiphospholipid syndrome. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1986 ◽  
Vol 67 (5) ◽  
pp. 1498-1503 ◽  
Author(s):  
WP Houdijk ◽  
ME Schiphorst ◽  
JJ Sixma

Abstract With the use of monoclonal antibodies that inhibit the ristocetin- induced binding of von Willebrand factor (VWF) to platelets and the binding to collagen, we have previously identified two distinct tryptic fragments. To prove that these fragments contain the platelet binding or the collagen binding domain, we investigated the direct binding of tryptic fragments of 125I-VWF to platelets in the presence of ristocetin and to collagen fibrils. During the course of the tryptic digestion, there was a rapid and parallel decrease in binding to platelets and collagen. In the first ten minutes, binding decreased greater than 50%; a further decrease to 19% and 29%, respectively, was noted at 90 minutes, but no further decrease was observed thereafter. The bound fragments were eluted from platelets and collagen and analyzed on polyacrylamide gradient gels. The fragments bound to the platelets appeared to be reduced, probably by endogenous reducing substances from the platelets. This was prevented by addition of N- ethylmaleimide during the incubation. After 24 hours of digestion, platelets predominantly bound fragments of 116 kd and collagen bound a single fragment of 48 kd. These fragments are similar to those previously identified with the monoclonal antibodies.


Blood ◽  
1986 ◽  
Vol 68 (3) ◽  
pp. 732-736 ◽  
Author(s):  
RI Parker ◽  
HR Gralnick

Abstract We studied the effects(s) of two monoclonal antibodies, 6D1 and 10E5 (directed against platelet glycoprotein Ib [GPIb] and the GPIIb/IIIa complex, respectively), and purified human plasma fibrinogen on the binding of released platelet-von Willebrand factor (vWf) to the platelet surface. Neither of the monoclonal antibodies nor fibrinogen had any effect on the amount of platelet-vWf expressed on unstimulated platelets or on the amount expressed on platelets stimulated in the absence of extracellular Ca++. However, the antibody directed against GPIIb/IIIa inhibited 72% of the thrombin-induced increase in the platelet-vWf bound to the platelet surface when platelets were stimulated in the presence of 5 mmol/L Ca++. The antibody against GPIb did not inhibit the surface expression of platelet-vWf on stimulated platelets in the presence of Ca++. Purified normal human fibrinogen inhibited the surface binding of platelet-vWf to thrombin-stimulated platelets to a degree similar to that observed with the monoclonal antibody directed against the GPIIb/IIIa complex. These data indicate that platelet-vWf released from platelets binds primarily to the GPIIb/IIIa complex at or near the plasma fibrinogen binding site.


Blood ◽  
1986 ◽  
Vol 67 (5) ◽  
pp. 1498-1503
Author(s):  
WP Houdijk ◽  
ME Schiphorst ◽  
JJ Sixma

With the use of monoclonal antibodies that inhibit the ristocetin- induced binding of von Willebrand factor (VWF) to platelets and the binding to collagen, we have previously identified two distinct tryptic fragments. To prove that these fragments contain the platelet binding or the collagen binding domain, we investigated the direct binding of tryptic fragments of 125I-VWF to platelets in the presence of ristocetin and to collagen fibrils. During the course of the tryptic digestion, there was a rapid and parallel decrease in binding to platelets and collagen. In the first ten minutes, binding decreased greater than 50%; a further decrease to 19% and 29%, respectively, was noted at 90 minutes, but no further decrease was observed thereafter. The bound fragments were eluted from platelets and collagen and analyzed on polyacrylamide gradient gels. The fragments bound to the platelets appeared to be reduced, probably by endogenous reducing substances from the platelets. This was prevented by addition of N- ethylmaleimide during the incubation. After 24 hours of digestion, platelets predominantly bound fragments of 116 kd and collagen bound a single fragment of 48 kd. These fragments are similar to those previously identified with the monoclonal antibodies.


Sign in / Sign up

Export Citation Format

Share Document