direct binding
Recently Published Documents


TOTAL DOCUMENTS

1359
(FIVE YEARS 319)

H-INDEX

108
(FIVE YEARS 8)

2022 ◽  
Vol 21 (1) ◽  
Author(s):  
Rachid El Fatimy ◽  
Yanhong Zhang ◽  
Evgeny Deforzh ◽  
Mahalakshmi Ramadas ◽  
Harini Saravanan ◽  
...  

Abstract Background miRNAs are regulatory transcripts established as repressors of mRNA stability and translation that have been functionally implicated in carcinogenesis. miR-10b is one of the key onco-miRs associated with multiple forms of cancer. Malignant gliomas exhibit particularly striking dependence on miR-10b. However, despite the therapeutic potential of miR-10b targeting, this miRNA’s poorly investigated and largely unconventional properties hamper the clinical translation. Methods We utilized Covalent Ligation of Endogenous Argonaute-bound RNAs and their high-throughput RNA sequencing to identify miR-10b interactome and a combination of biochemical and imaging approaches for target validation. They included Crosslinking and RNA immunoprecipitation with spliceosomal proteins, a combination of miRNA FISH with protein immunofluorescence in glioma cells and patient-derived tumors, native Northern blotting, and the transcriptome-wide analysis of alternative splicing. Results We demonstrate that miR-10b binds to U6 snRNA, a core component of the spliceosomal machinery. We provide evidence of the direct binding between miR-10b and U6, in situ imaging of miR-10b and U6 co-localization in glioma cells and tumors, and biochemical co-isolation of miR-10b with the components of the spliceosome. We further demonstrate that miR-10b modulates U6 N-6-adenosine methylation and pseudouridylation, U6 binding to splicing factors SART3 and PRPF8, and regulates U6 stability, conformation, and levels. These effects on U6 result in global splicing alterations, exemplified by the altered ratio of the isoforms of a small GTPase CDC42, reduced overall CDC42 levels, and downstream CDC42 -mediated effects on cell viability. Conclusions We identified U6 snRNA, the key RNA component of the spliceosome, as the top miR-10b target in glioblastoma. We, therefore, present an unexpected intersection of the miRNA and splicing machineries and a new nuclear function for a major cancer-associated miRNA.


2022 ◽  
Vol 12 ◽  
Author(s):  
Qian Liu ◽  
Jing Lin ◽  
Li Wen ◽  
Shaozhou Wang ◽  
Peng Zhou ◽  
...  

The protein–protein association in cellular signaling networks (CSNs) often acts as weak, transient, and reversible domain–peptide interaction (DPI), in which a flexible peptide segment on the surface of one protein is recognized and bound by a rigid peptide-recognition domain from another. Reliable modeling and accurate prediction of DPI binding affinities would help to ascertain the diverse biological events involved in CSNs and benefit our understanding of various biological implications underlying DPIs. Traditionally, peptide quantitative structure-activity relationship (pQSAR) has been widely used to model and predict the biological activity of oligopeptides, which employs amino acid descriptors (AADs) to characterize peptide structures at sequence level and then statistically correlate the resulting descriptor vector with observed activity data via regression. However, the QSAR has not yet been widely applied to treat the direct binding behavior of large-scale peptide ligands to their protein receptors. In this work, we attempted to clarify whether the pQSAR methodology can work effectively for modeling and predicting DPI affinities in a high-throughput manner? Over twenty thousand short linear motif (SLiM)-containing peptide segments involved in SH3, PDZ and 14-3-3 domain-medicated CSNs were compiled to define a comprehensive sequence-based data set of DPI affinities, which were represented by the Boehringer light units (BLUs) derived from previous arbitrary light intensity assays following SPOT peptide synthesis. Four sophisticated MLMs (MLMs) were then utilized to perform pQSAR modeling on the set described with different AADs to systematically create a variety of linear and nonlinear predictors, and then verified by rigorous statistical test. It is revealed that the genome-wide DPI events can only be modeled qualitatively or semiquantitatively with traditional pQSAR strategy due to the intrinsic disorder of peptide conformation and the potential interplay between different peptide residues. In addition, the arbitrary BLUs used to characterize DPI affinity values were measured via an indirect approach, which may not very reliable and may involve strong noise, thus leading to a considerable bias in the modeling. The Rprd2 = 0.7 can be considered as the upper limit of external generalization ability of the pQSAR methodology working on large-scale DPI affinity data.


2022 ◽  
Vol 1 ◽  
Author(s):  
Wenhui Yu ◽  
Yuxin Bai ◽  
Arjun Raha ◽  
Zhi Su ◽  
Fei Geng

The ongoing COVID-19 outbreak have posed a significant threat to public health worldwide. Recently Toll-like receptor (TLR) has been proposed to be the drug target of SARS-CoV-2 treatment, the specificity and efficacy of such treatments remain unknown. In the present study we performed the investigation of repurposed drugs via a framework comprising of Search Tool for Interacting Chemicals (STITCH), Kyoto Encyclopedia of Genes and Genomes (KEGG), molecular docking, and virus-host-drug interactome mapping. Chloroquine (CQ) and hydroxychloroquine (HCQ) were utilized as probes to explore the interaction network that is linked to SARS-CoV-2. 47 drug targets were shown to be overlapped with SARS-CoV-2 network and were enriched in TLR signaling pathway. Molecular docking analysis and molecular dynamics simulation determined the direct binding affinity of TLR9 to CQ and HCQ. Furthermore, we established SARS-CoV-2-human-drug protein interaction map and identified the axis of TLR9-ERC1-Nsp13 and TLR9-RIPK1-Nsp12. Therefore, the elucidation of the interactions of SARS-CoV-2 with TLR9 axis will not only provide pivotal insights into SARS-CoV-2 infection and pathogenesis but also improve the treatment against COVID-19.


2022 ◽  
Author(s):  
Girija A. Bodhankar ◽  
Payman Tohidifar ◽  
Zachary L. Foust ◽  
George W. Ordal ◽  
Christopher V. Rao

Bacillus subtilis employs ten chemoreceptors to move in response to chemicals in its environment. While the sensing mechanisms have been determined for many attractants, little is known about the sensing mechanisms for repellents. In this work, we investigated phenol chemotaxis in B. subtilis . Phenol is an attractant at low, micromolar concentrations, and a repellent at high, millimolar concentrations. McpA was found to be the principal chemoreceptor governing the repellent response to phenol and other related aromatic compounds. In addition, the chemoreceptors McpC and HemAT were found to govern the attractant response to phenol and related compounds. Using chemoreceptor chimeras, McpA was found to sense phenol using its signaling domain rather than its sensing domain. These observations were substantiated in vitro, where direct binding of phenol to the signaling domain of McpA was observed using saturation-transfer difference nuclear magnetic resonance. These results further advance our understanding of B. subtilis chemotaxis and further demonstrate that the signaling domain of B. subtilis chemoreceptors can directly sense chemoeffectors. IMPORTANCE Bacterial chemotaxis is commonly thought to employ a sensing mechanism involving the extracellular sensing domain of chemoreceptors. Some ligands, however, appear to be sensed by the signaling domain. Phenolic compounds, commonly found in soil and root exudates, provide environmental cues for soil microbes like Bacillus subtilis . We show that phenol is sensed both as an attractant and a repellent. While the mechanism for sensing phenol as an attractant is still unknown, we found that phenol is sensed as a repellent by the signaling domain of the chemoreceptor McpA. This study furthers our understanding of the unconventional sensing mechanisms employed by the B. subtilis chemotaxis pathway.


2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Alexandra Tran-Van-Minh ◽  
Michel De Waard ◽  
Norbert Weiss

AbstractVoltage-gated calcium channels are essential regulators of brain function where they support depolarization-induced calcium entry into neurons. They consist of a pore-forming subunit (Cavα1) that requires co-assembly with ancillary subunits to ensure proper functioning of the channel. Among these ancillary subunits, the Cavβ plays an essential role in regulating surface expression and gating of the channels. This regulation requires the direct binding of Cavβ onto Cavα1 and is mediated by the alpha interacting domain (AID) within the Cavα1 subunit and the α binding pocket (ABP) within the Cavβ subunit. However, additional interactions between Cavα1 and Cavβ have been proposed. In this study, we analyzed the importance of Cavβ3 surface charged residues in the regulation of Cav2.1 channels. Using alanine-scanning mutagenesis combined with electrophysiological recordings we identified several amino acids within the Cavβ3 subunit that contribute to the gating of the channel. These findings add to the notion that additional contacts besides the main AID/ABP interaction may occur to fine-tune the expression and properties of the channel.


Author(s):  
Guido Mellado ◽  
Jose Antonio Garate ◽  
Alan Neely

Spider toxin SNX-482 is a cysteine-rich peptide that interferes with calcium channel activity by binding to voltage-sensing domains of CaV2.3 subtype. Two general binding mechanisms are present in nature: direct binding from the aqueous phase or through lateral diffusion from the membrane, the so-called reduction in dimensionality mechanism. In this work, via coarse-grained and atomistic molecular dynamics simulations, we have systematically studied the spontaneous partitioning of SNX-482 with membranes of different anionic compositions and explored via diffusional analysis both binding mechanisms. Our simulations revealed a conserved protein patch that inserts within the membrane, a preference for binding towards partially negatively charged membranes, and that electrostatics drives membrane binding. Finally, diffusivity calculations showed that the toxin diffusion along the membrane plane is an order of magnitude slower than the aqueous phase suggesting that the critical factor in determin-ing the SNX-482-CaV2.3 binding mechanism is the affinity between the membrane and SNX-482


2021 ◽  
Author(s):  
Funso E. Ogunmolu ◽  
Shoeib Moradi ◽  
Vladimir A. Volkov ◽  
Chris van Hoorn ◽  
Jingchao Wu ◽  
...  

Centrioles are microtubule-based organelles required for the formation of centrosomes and cilia. Centriolar microtubules, unlike their cytosolic counterparts, grow very slowly and are very stable. The complex of centriolar proteins CP110 and CEP97 forms a cap that stabilizes the distal centriole end and prevents its over-elongation. Here, we used in vitro reconstitution assays to show that whereas CEP97 does not interact with microtubules directly, CP110 specifically binds microtubule plus ends, potently blocks their growth and induces microtubule pausing. Cryo-electron tomography indicated that CP110 binds to the luminal side of microtubule plus ends and reduces protofilament peeling. Furthermore, CP110 directly interacts with another centriole biogenesis factor, CPAP/SAS-4, which tracks growing microtubule plus ends, slows down their growth and prevents catastrophes. CP110 and CPAP synergize in inhibiting plus-end growth, and this synergy depends on their direct binding. Together, our data reveal a molecular mechanism controlling centriolar microtubule plus-end dynamics and centriole biogenesis.


2021 ◽  
Author(s):  
Malin Erlandsson ◽  
Karin Andersson ◽  
Nina Oparina ◽  
Venkataragavan Chandrasekaran ◽  
Anastasios Damdimopoulos ◽  
...  

Abstract Upon activation, CD4+ T cells adapt metabolically to fulfill their effector function in autoimmunity. Here we show that nuclear survivin is essential for transcriptional regulation of glucose utilization. We found that the glycolytic switch in interferon (IFN) g–producing CD4+ cells is dependent on a complex of survivin with interferon regulatory factor 1 (IRF1), and Smad3 and was reversed by survivin inhibition. Transcriptome analysis of CD4+ cells and sequencing of survivin-bound chromatin identified a hub of metabolism regulating genes whose transcription depended on survivin. Direct binding of survivin to IRF1 and SMAD3 promoted IRF1-mediated transcription, repressed SMAD3 activity, and lowered PFKFB3 production. Inhibiting survivin upregulated PFKFB3, restored glycolysis, and reduced glucose uptake, improving control over IFNg-dependent T-cell functions. Thus, IRF1-survivin-SMAD3 interactions are important for metabolic adaptation of CD4+ cells and provide an attractive strategy to counteract IFNg-dependent inflammation.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Shahnawaz Rehman ◽  
Jiantao Song ◽  
Mohammad Faisal ◽  
Abdulrahman A. Alatar ◽  
Firoz Akhter ◽  
...  

Objectives. In diabetes mellitus, hyperglycemia-mediated nonenzymatic glycosylation of fibrinogen protein plays a crucial role in the pathogenesis of micro- and macrovascular complications especially atherosclerosis via the generation of advanced glycation end products (AGEs). Methylglyoxal (MG) induces glycation of fibrinogen, resulting in structural alterations that lead to autoimmune response via the generation of neoepitopes on protein molecules. The present study was designed to probe the prevalence of autoantibodies against MG-glycated fibrinogen (MG-Fib) in type 2 diabetes mellitus (T2DM), atherosclerosis (ATH), and diabetic atherosclerosis (T2DM-ATH) patients. Design and Methods. The binding affinity of autoantibodies in patients’ sera (T2DM, n = 100 ; ATH, n = 100 ; and T2DM-ATH, n = 100 ) and isolated immunoglobulin G (IgG) against native fibrinogen (N-Fib) and MG-Fib to healthy subjects (HS, n = 50 ) was accessed by direct binding ELISA. The results of direct binding were further validated by competitive/inhibition ELISA. Moreover, AGE detection, ketoamines, protein carbonyls, hydroxymethylfurfural (HMF), thiobarbituric acid reactive substances (TBARS), and carboxymethyllysine (CML) concentrations in patients’ sera were also determined. Furthermore, free lysine and free arginine residues were also estimated. Results. The high binding affinity was observed in 54% of T2DM, 33% of ATH, and 65% of T2DM-ATH patients’ samples with respect to healthy subjects against MG-Fib antigen in comparison to N-Fib ( p < 0.05 to p < 0.0001 ). HS sera showed nonsignificant binding ( p > 0.05 ) with N-Fib and MG-Fib. Other biochemical parameters were also found to be significant ( p < 0.05 ) in the patient groups with respect to the HS group. Conclusions. These findings in the future might pave a way to authenticate fibrinogen as a biomarker for the early detection of diabetes-associated micro- and macrovascular complications.


Cancers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 6365
Author(s):  
Christian Bailly ◽  
Xavier Thuru ◽  
Bruno Quesnel

The disaccharide lactose is an excipient commonly used in pharmaceutical products. The two anomers, α- and β-lactose (α-L/β-L), differ by the orientation of the C-1 hydroxyl group on the glucose unit. In aqueous solution, a mutarotation process leads to an equilibrium of about 40% α-L and 60% β-L at room temperature. Beyond a pharmaceutical excipient in solid products, α-L has immuno-modulatory effects and functions as a major regulator of TIM-3/Gal-9 immune checkpoint, through direct binding to the β-galactoside-binding lectin galectin-9. The blockade of the co-inhibitory checkpoint TIM-3 expressed on T cells with anti-TIM-3 antibodies represents a promising approach to combat different onco-hematological diseases, in particular myelodysplastic syndromes and acute myeloid leukemia. In parallel, the discovery and development of anti-TIM-3 small molecule ligands is emerging, including peptides, RNA aptamers and a few specifically designed heterocyclic molecules. An alternative option consists of targeting the different ligands of TIM-3, notably Gal-9 recognized by α-lactose. Modulation of the TIM-3/Gal-9 checkpoint can be achieved with both α- and β-lactose. Moreover, lactose is a quasi-pan-galectin ligand, capable of modulating the functions of most of the 16 galectin molecules. The present review provides a complete analysis of the pharmaceutical and galectin-related biological functions of (α/β)-lactose. A focus is made on the capacity of lactose and Gal-9 to modulate both the TIM-3/Gal-9 and PD-1/PD-L1 immune checkpoints in oncology. Modulation of the TIM-3/Gal-9 checkpoint is a promising approach for the treatment of cancers and the role of lactose in this context is discussed. The review highlights the immuno-regulatory functions of lactose, and the benefit of the molecule well beyond its use as a pharmaceutical excipient.


Sign in / Sign up

Export Citation Format

Share Document